Line 1: Line 1:
 
== If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is ''zero'' ==
 
== If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is ''zero'' ==
  
<math>P_\infty \equiv</math>
+
<math>P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|dt</math>

Revision as of 08:39, 17 June 2009

If $ E_\infty $ is finite, then $ P_\infty $ is zero

$ P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|dt $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood