(New page: E<math>\infty</math> = <math>\int_{-<math>\infty</math>}^{<math>\infty</math>}</math>(<math>\sqrt{t}</math>)^2 dt E<math>\infty</math> = <math>\int</math> t dt E<math>\infty</math> = ...)
 
Line 1: Line 1:
E<math>\infty</math> = <math>\int_{-<math>\infty</math>}^{<math>\infty</math>}</math>(<math>\sqrt{t}</math>)^2 dt
+
<math>x(t)=\sqrt{t}</math>
 +
----
 +
<math>E\infty= \int_{-\infty}^{\infty}|x(t)|^2dt</math>
  
 +
E<math>\infty</math> = <math>\int_{-\infty}^{\infty} tdt</math>
  
E<math>\infty</math> = <math>\int</math> t dt
 
  
  
 +
E<math>\infty</math> = <math>\frac{1}{2} t^2</math> evaluated from -<math>\infty</math> to +<math>\infty</math> = <math>\infty</math>
  
E<math>\infty</math> = (<math>\frac{1}{2}</math>)t^2 evaluated from -<math>\infty</math> to +<math>\infty</math> = <math>\infty</math>
 
  
 +
P<math>\infty</math> = lim T<math>\to</math><math>\infty</math> <math>\frac{1}{2T}</math> <math>\int_{-T}^{T}\ tdt</math>
  
P<math>\infty</math> = lim T<math>\to</math><math>\infty</math> <math>\frac{1}{2T}</math> <math>\int_{-T}^{T}</math>
+
<math>\frac{1}{2T} (.5t^2)|_{-T}^{T} = \frac{T}{4}</math>
 +
 
 +
lim T<math>\to</math><math>\infty</math> = <math>\infty</math> = P<math>\infty</math>

Revision as of 06:48, 17 June 2009

$ x(t)=\sqrt{t} $


$ E\infty= \int_{-\infty}^{\infty}|x(t)|^2dt $

E$ \infty $ = $ \int_{-\infty}^{\infty} tdt $


E$ \infty $ = $ \frac{1}{2} t^2 $ evaluated from -$ \infty $ to +$ \infty $ = $ \infty $


P$ \infty $ = lim T$ \to $$ \infty $ $ \frac{1}{2T} $ $ \int_{-T}^{T}\ tdt $

$ \frac{1}{2T} (.5t^2)|_{-T}^{T} = \frac{T}{4} $

lim T$ \to $$ \infty $ = $ \infty $ = P$ \infty $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett