(New page: Total Energy: <math>E_{\infty} = \int^{\infty}_{-\infty} |x(t)|^2 dt = \lim_{T\to\infty} \int^T_{-T} |x(t)|^2 dt</math> Average Power: <math>P_{\infty} = \lim_{T\to\infty} \frac{1}{2T} ...)
 
 
Line 14: Line 14:
  
 
-Bill Snow
 
-Bill Snow
 +
 +
[https://kiwi.ecn.purdue.edu/rhea/index.php/Definitions Go Back]

Latest revision as of 06:39, 16 June 2009

Total Energy:

$ E_{\infty} = \int^{\infty}_{-\infty} |x(t)|^2 dt = \lim_{T\to\infty} \int^T_{-T} |x(t)|^2 dt $

Average Power:

$ P_{\infty} = \lim_{T\to\infty} \frac{1}{2T} \int^T_{-T} |x(t)|^2 dt $

Therefore if

$ E_{\infty} < \infty $,

$ P_{\infty} = \lim_{T\to\infty} \frac{E_{\infty}}{2T} = 0 $

-Bill Snow

Go Back

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett