(Removing all content from page) |
|||
Line 1: | Line 1: | ||
+ | We will start this from the beginning with the series: | ||
+ | <math>1+r+r^2+r^3+...+r^N=\frac{1}{1-r}-\frac{r^{N+1}}{1-r}</math> | ||
+ | |||
+ | From here we substitute <math>r=-x^2</math> to get | ||
+ | |||
+ | <math>1-x^2+x^4-x^6+...+(-1)^Nx^{2N}=\frac{1}{1+x^2}-\frac{(-1)^{N+1}x^{2(N+1)}}{1+x^2}</math> |
Revision as of 14:55, 26 October 2008
We will start this from the beginning with the series:
$ 1+r+r^2+r^3+...+r^N=\frac{1}{1-r}-\frac{r^{N+1}}{1-r} $
From here we substitute $ r=-x^2 $ to get
$ 1-x^2+x^4-x^6+...+(-1)^Nx^{2N}=\frac{1}{1+x^2}-\frac{(-1)^{N+1}x^{2(N+1)}}{1+x^2} $