Line 9: Line 9:
 
Let <math>M<||f||_{\infty} </math>, and <math>E=\{|f|>M\}</math>, then
 
Let <math>M<||f||_{\infty} </math>, and <math>E=\{|f|>M\}</math>, then
  
<math>\lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n}</math>
+
<math>\lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n}</math>

Revision as of 13:41, 11 July 2008

a/$ \mu(\{|f|>0\})>0 $, so we have

$ (\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n} $

Taking the limit of both side as $ n $ go to infinity, we get

$ \lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty} $

Let $ M<||f||_{\infty} $, and $ E=\{|f|>M\} $, then

$ \lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal