Line 5: Line 5:
 
Taking the limit of both side as <math>n</math> go to infinity, we get
 
Taking the limit of both side as <math>n</math> go to infinity, we get
  
<math>\lim_{n\to \infty}||f||_{n} = ||f||_{\infty}</math>
+
<math>\lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty}</math>
  
Let <math>M<||f||_{\infty} </math>
+
Let <math>M<||f||_{\infty} </math>, and <math>E=\{|f|>M\}</math>, then
 +
 
 +
<math>\lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n}</math>

Revision as of 13:40, 11 July 2008

a/$ \mu(\{|f|>0\})>0 $, so we have

$ (\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n} $

Taking the limit of both side as $ n $ go to infinity, we get

$ \lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty} $

Let $ M<||f||_{\infty} $, and $ E=\{|f|>M\} $, then

$ \lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett