Line 1: Line 1:
 
<math>(\Rightarrow)</math>
 
<math>(\Rightarrow)</math>
 
If there is a sequence of odd polynomials <math> {p_n(x)} </math> with <math>p_n \rightarrow f </math>, then <math> f(0) = 0 </math>.
 
If there is a sequence of odd polynomials <math> {p_n(x)} </math> with <math>p_n \rightarrow f </math>, then <math> f(0) = 0 </math>.
Since <math>p_n(x)</math> are odd polynomials, then <math> p_n(0) = 0. </math>. Then <math>f(0) = \lim_{n \rightarrow \infity} p_n(0) = 0</math>
+
Since <math>p_n(x)</math> are odd polynomials, then <math> p_n(0) = 0. </math>. Then <math>f(0) = \lim_{n \rightarrow \infty} p_n(0) = 0</math>

Revision as of 01:17, 10 July 2008

$ (\Rightarrow) $ If there is a sequence of odd polynomials $ {p_n(x)} $ with $ p_n \rightarrow f $, then $ f(0) = 0 $. Since $ p_n(x) $ are odd polynomials, then $ p_n(0) = 0. $. Then $ f(0) = \lim_{n \rightarrow \infty} p_n(0) = 0 $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn