Line 10: | Line 10: | ||
<math> | <math> | ||
− | \int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M,|f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f| | + | \int_{\{f_n>M\}}|f|$\leq$\int_{\{|f_n|>M,|f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f| |
− | + | $\leq$ | |
</math> | </math> |
Revision as of 09:09, 2 July 2008
$ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\leq\sup\limits_n\int_{(0,1)}|f_n-f|+\sup\limits_n\int_{\{|f_n|>M\}}|f| $
$ Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\limits_n\int_{(0,1)}|f_n-f|=0 $
Therefore, to show $ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty), $it suffices to show that $ \sup\limits_n\int_{\{|f_n|>M\}}|f|\to0(M\to\infty) $
Actually,
$ \int_{\{f_n>M\}}|f|$\leq$\int_{\{|f_n|>M,|f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f| $\leq$ $