Line 1: Line 1:
 
#1
 
#1
  
<math>\sup\int_{\{|f_n|>M\}}|f_n|\leq\sup\int_{(0,1)}|f_n-f|+\sup\int_{\{|f_n|>M\}}|f|</math>
+
<math>\sup\limits_n\int_{\{|f_n|>M\}}|f_n|\leq\sup\int_{(0,1)}|f_n-f|+\sup\int_{\{|f_n|>M\}}|f|</math>
  
 
<math>Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\int_{(0,1)}|f_n-f|=0</math>
 
<math>Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\int_{(0,1)}|f_n-f|=0</math>
  
 
To show <math>\sup\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty),</math>it suffices to show that <math>\sup\int_{\{|f_n|>M\}}|f|\to0(M\to\infty)</math>
 
To show <math>\sup\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty),</math>it suffices to show that <math>\sup\int_{\{|f_n|>M\}}|f|\to0(M\to\infty)</math>

Revision as of 08:59, 2 July 2008

  1. 1

$ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\leq\sup\int_{(0,1)}|f_n-f|+\sup\int_{\{|f_n|>M\}}|f| $

$ Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\int_{(0,1)}|f_n-f|=0 $

To show $ \sup\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty), $it suffices to show that $ \sup\int_{\{|f_n|>M\}}|f|\to0(M\to\infty) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett