(6 intermediate revisions by the same user not shown)
Line 11: Line 11:
 
<math> \therefore x_2(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X_2(j\omega) e^{jt\omega}\,d\omega </math>
 
<math> \therefore x_2(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X_2(j\omega) e^{jt\omega}\,d\omega </math>
  
<math>  \Rightarrow ~~~~~~~~= \frac {1}{2\pi} \int_{0}^{2} 2 e^{jt\omega}\,d\omega + \frac {1}{2\pi} \int_{-2}^{0} (-2) e^{jt\omega}\,d\omega </math>
+
<math>  \Rightarrow ~~~~~~~= \frac {1}{2\pi} \int_{0}^{2} 2 e^{jt\omega}\,d\omega + \frac {1}{2\pi} \int_{-2}^{0} (-2) e^{jt\omega}\,d\omega </math>
 +
 
 +
 
 +
<math>  \Rightarrow ~~~~~~~= \frac {e^{j2t} - 1}{jt\pi} - \frac {1 - e^{-j2t}}{jt\pi} </math>
 +
 
 +
<math>  \Rightarrow ~~~~~~~= \left (  \frac {e^{j2t} + e^{-j2t} - 2}{jt\pi} \right ) </math>
 +
 
 +
<math>  \Rightarrow ~~~~~~~= \left ( \frac {2\cos(2t) -2}{jt\pi} \right ) </math>
 +
 
 +
<math>  \Rightarrow ~~~~~~~= \frac {-(4j\sin^2(t))}{t\pi} </math>

Latest revision as of 19:13, 1 July 2008

Solution to Prob 4.4b

Its given that X(jw) =

$ ~2, ~~0 \le \omega \le 2 $

$ -2, ~~-2 \le \omega < 0 $

$ ~0, ~~|\omega| > 2 $

$ \therefore x_2(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X_2(j\omega) e^{jt\omega}\,d\omega $

$ \Rightarrow ~~~~~~~= \frac {1}{2\pi} \int_{0}^{2} 2 e^{jt\omega}\,d\omega + \frac {1}{2\pi} \int_{-2}^{0} (-2) e^{jt\omega}\,d\omega $


$ \Rightarrow ~~~~~~~= \frac {e^{j2t} - 1}{jt\pi} - \frac {1 - e^{-j2t}}{jt\pi} $

$ \Rightarrow ~~~~~~~= \left ( \frac {e^{j2t} + e^{-j2t} - 2}{jt\pi} \right ) $

$ \Rightarrow ~~~~~~~= \left ( \frac {2\cos(2t) -2}{jt\pi} \right ) $

$ \Rightarrow ~~~~~~~= \frac {-(4j\sin^2(t))}{t\pi} $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman