(2 intermediate revisions by the same user not shown)
Line 10: Line 10:
  
 
<math> \Rightarrow ~y(t) \le B\int_{2}^{5} e^t\, dt </math>
 
<math> \Rightarrow ~y(t) \le B\int_{2}^{5} e^t\, dt </math>
 +
 +
<math> \Rightarrow ~y(t) \le B*(e^5 - e^2) </math>
 +
 +
Hence <math> y(t) \le B*c \le C~, ~~~ (where~c = e^5 - e^2 ~and ~~C = B*c) </math>
 +
 +
<math> \therefore y(t) ~is ~bounded </math>

Latest revision as of 12:02, 1 July 2008

I thought that the solution posted in the Bonus 3 for problem 4 is slightly wrong in explaining why System II is Stable.

Its given that $ x(t) \le B $

$ y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt $

$ \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt $

$ \Rightarrow ~y(t) \le B\int_{-\infty}^{\infty} e^t[u(t-2) - u(t-5)]\, dt $

$ \Rightarrow ~y(t) \le B\int_{2}^{5} e^t\, dt $

$ \Rightarrow ~y(t) \le B*(e^5 - e^2) $

Hence $ y(t) \le B*c \le C~, ~~~ (where~c = e^5 - e^2 ~and ~~C = B*c) $

$ \therefore y(t) ~is ~bounded $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood