(New page: I thought that the solution posted in the Bonus 3 for problem 4 is slightly wrong in explaining why System II is Stable. Its given that <math> x(t) \le B </math> <math> y(t) = x(t) * h(t...)
 
 
(9 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
Its given that <math> x(t) \le B </math>
 
Its given that <math> x(t) \le B </math>
  
<math> y(t) = x(t) * h(t) = \int_{-infty}^{infty} x(t)h(t)\, dt </math>
+
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt </math>
 +
 
 +
<math> \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt </math>
 +
 
 +
<math> \Rightarrow ~y(t) \le B\int_{-\infty}^{\infty} e^t[u(t-2) - u(t-5)]\, dt </math>
 +
 
 +
<math> \Rightarrow ~y(t) \le B\int_{2}^{5} e^t\, dt </math>
 +
 
 +
<math> \Rightarrow ~y(t) \le B*(e^5 - e^2) </math>
 +
 
 +
Hence <math> y(t) \le B*c \le C~, ~~~ (where~c = e^5 - e^2 ~and ~~C = B*c) </math>
 +
 
 +
<math> \therefore y(t) ~is ~bounded </math>

Latest revision as of 12:02, 1 July 2008

I thought that the solution posted in the Bonus 3 for problem 4 is slightly wrong in explaining why System II is Stable.

Its given that $ x(t) \le B $

$ y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt $

$ \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt $

$ \Rightarrow ~y(t) \le B\int_{-\infty}^{\infty} e^t[u(t-2) - u(t-5)]\, dt $

$ \Rightarrow ~y(t) \le B\int_{2}^{5} e^t\, dt $

$ \Rightarrow ~y(t) \le B*(e^5 - e^2) $

Hence $ y(t) \le B*c \le C~, ~~~ (where~c = e^5 - e^2 ~and ~~C = B*c) $

$ \therefore y(t) ~is ~bounded $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva