Line 17: Line 17:
 
<math> z_k = \left( \frac { \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) * (1 - (-1)^k) }{jk\pi/2} \right) </math>
 
<math> z_k = \left( \frac { \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) * (1 - (-1)^k) }{jk\pi/2} \right) </math>
  
<math> z_k = \frac {2}{j} \left( \frac {1}{(k\pi)^2} \sin ( \frac {k\pi}{2} ) \right) * (1 - (-1)^k)
+
<math> z_k = \frac {2}{j} \left( \frac {1}{(k\pi)^2} \sin ( \frac {k\pi}{2} ) \right) * (1 - (-1)^k) \forall k \ne 0 </math>

Revision as of 11:35, 1 July 2008

7b OldKiwi.jpg

Let $ g(t) = \left ( \frac{dz}{dt} \right ) $

7b1 OldKiwi.jpg 7b2 OldKiwi.jpg

Therefore, $ m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

But $ g_k = m_k + n_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

$ \therefore g_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) (-1)^k \right) $

But we had taken the derivative of z(t) to get g(t) (and hence $ g_k $). $ \therefore z_k = \left ( \frac{g_k}{jk\omega_o} \right ) $

$ z_k = \left( \frac { \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) * (1 - (-1)^k) }{jk\pi/2} \right) $

$ z_k = \frac {2}{j} \left( \frac {1}{(k\pi)^2} \sin ( \frac {k\pi}{2} ) \right) * (1 - (-1)^k) \forall k \ne 0 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett