m
Line 5: Line 5:
 
[[Image:7b1_OldKiwi.jpg]]
 
[[Image:7b1_OldKiwi.jpg]]
  
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{4} ) \right) </math>
+
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) 
 +
                and n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math>

Revision as of 11:14, 1 July 2008

7b OldKiwi.jpg

Let $ g(t) = \left ( \frac{dz}{dt} \right ) $

7b1 OldKiwi.jpg

Therefore, $ m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) and n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett