Line 4: Line 4:
  
 
<math>a_{k} = 1/T \int_{T}  x(t) e^{-jkw_{o}t} dt</math>
 
<math>a_{k} = 1/T \int_{T}  x(t) e^{-jkw_{o}t} dt</math>
<math>a_{k} = 1/T \int_{-T} ^ {T} e^{-jk2\frac{\pi}{T} t} dt</math>
+
 
 +
      <math>= 1/T \int_{-T_{1}} ^ {T_{1}} 1*e^{-jk2\frac{\pi}{T} t} dt</math>  (x(t)=1)
 +
     
 +
      <math>= 1/T \int_{-T_{1}} ^ {T_{1}} e^{-jk2\frac{\pi}{T} t} dt</math>
 +
 
 +
      <math>= 1/T [\frac{e^{-jk2\frac{\pi}{T} t}}{-jk2\frac{\pi}{T}}]_{-T_{1}} ^ {T_{1}}</math>
 +
 
 +
      <math>= \frac{-1}{jk2\pi} (e^{-jk2\frac{\pi}{T} T_{1}} - e^{jk2\frac{\pi}{T} T_{1}})</math>
 +
 
 +
      <math>= \frac{1}{k\pi} (Sin(\frac{2k\pi}{T} T_{1})</math>

Revision as of 16:58, 30 June 2008

Determine the Fourier Series co-efficient for the following continuous time periodic signals.Show the details of your calculations and simplify your answers.

Figure. OldKiwi.jpg

$ a_{k} = 1/T \int_{T} x(t) e^{-jkw_{o}t} dt $

     $ = 1/T \int_{-T_{1}} ^ {T_{1}} 1*e^{-jk2\frac{\pi}{T} t} dt $  (x(t)=1)
     
     $ = 1/T \int_{-T_{1}} ^ {T_{1}} e^{-jk2\frac{\pi}{T} t} dt $
     $ = 1/T [\frac{e^{-jk2\frac{\pi}{T} t}}{-jk2\frac{\pi}{T}}]_{-T_{1}} ^ {T_{1}} $
     $ = \frac{-1}{jk2\pi} (e^{-jk2\frac{\pi}{T} T_{1}} - e^{jk2\frac{\pi}{T} T_{1}}) $
     $ = \frac{1}{k\pi} (Sin(\frac{2k\pi}{T} T_{1}) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett