Line 8: Line 8:
 
   <math>\Rightarrow \frac{w_{o}}{2\pi} = \frac{K}{N} \Rightarrow</math>Rational number
 
   <math>\Rightarrow \frac{w_{o}}{2\pi} = \frac{K}{N} \Rightarrow</math>Rational number
 
   <math>\therefore \frac{w_{o}}{2\pi}</math> shold be a rational number
 
   <math>\therefore \frac{w_{o}}{2\pi}</math> shold be a rational number
 +
 +
(b) Show that the system described by
 +
    <math>y[n] = x[n] + x[n+1] + x[n+2]</math> is a LTI system.
 +
 +
    <math>ax_{1}[n]+bx_{2}[n] \rightarrow ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2] </math>
 +
                                        <math>=</math>

Revision as of 15:23, 30 June 2008

(a) Derive the condition for which the discrete time complex exponetial signal x[n] is periodic.

 $ x[n] = e^{jw_{o}n} $         
 $ x[n] = x[n+N] = e^{jw_{o}(n+N)} = e^{jw_{o}n}e^{jw_{o}N} $
 to be periodic 
 $ e^{jw_{o}N} = 1 = e^{j2\pi k} $
 $ \therefore w_{o}N = 2\pi k $
 $ \Rightarrow \frac{w_{o}}{2\pi} = \frac{K}{N} \Rightarrow $Rational number
 $ \therefore \frac{w_{o}}{2\pi} $ shold be a rational number

(b) Show that the system described by

   $ y[n] = x[n] + x[n+1] + x[n+2] $ is a LTI system.
   $ ax_{1}[n]+bx_{2}[n] \rightarrow ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]  $
                                        $ = $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett