m
 
Line 37: Line 37:
 
There are many types of stability, for this course, we first consider [[BIBO_OldKiwi]] (Bounded Input Bounded Output) stability.
 
There are many types of stability, for this course, we first consider [[BIBO_OldKiwi]] (Bounded Input Bounded Output) stability.
  
A system is BIBO stable if, for all bounded inputs (<math>\exist B \epsilon \Re, x(t) < B</math>), the output is also bounded (<math>y(t) < \infty</math>)
+
A system is BIBO stable if, for all bounded inputs (<math>\exist B \epsilon \Re, |x(t)| < B</math>), the output is also bounded (<math>|y(t)| < \infty</math>)
  
 
==[[Time Invariance_OldKiwi]]==
 
==[[Time Invariance_OldKiwi]]==

Latest revision as of 19:52, 18 June 2008

The six basic properties of Systems_OldKiwi

Memory_OldKiwi

A system with memory has outputs that depend on previous (or future) inputs.

  • Example of a system with memory:

$ y(t) = x(t - \pi) $

  • Example of a system without memory:

$ y(t) = x(t) $

Invertibility_OldKiwi

An invertible system is one in which there is a one-to-one correlation between inputs and outputs.

  • Example of an invertible system:

$ y(t) = x(t) $

  • Example of a non-invertible system:

$ y(t) = |x(t)| $

In the second example, both x(t) = -3 and x(t) = 3 yield the same result.

Causality_OldKiwi

A causal system has outputs that only depend on current and/or previous inputs.

  • Example of a causal system:

$ y(t) = x(t) + x(t - 1) $

  • Example of a non-causal system:

$ y(t) = x(t) + x(t + 1) $

Stability_OldKiwi

There are many types of stability, for this course, we first consider BIBO_OldKiwi (Bounded Input Bounded Output) stability.

A system is BIBO stable if, for all bounded inputs ($ \exist B \epsilon \Re, |x(t)| < B $), the output is also bounded ($ |y(t)| < \infty $)

Time Invariance_OldKiwi

A system is time invariant if a shift in the time domain corresponds to the same shift in the output.

  • Example of a time invariant system:

$ y_1(t) = x_1(t) \mapsto y_2(t - t_0) = x_2(t - t_0) $

  • Example of a time variant system:

$ y_1(t) = \sin(t) x_1(t) \mapsto y_2(t - t_0) = \sin(t) x_2(t - t_0) $

In the first example, $ y_2 $ is the shifted version of $ y_1 $. This is not true of the second example.

Linearity_OldKiwi

A system is linear if the superposition_OldKiwi property holds, that is, that linear combinations of inputs lead to the same linear combinations of the outputs.

A system with inputs $ x_1 $ and $ x_2 $ and corresponding outputs $ y_1 $ and $ y_2 $ is linear if: $ ax_1 + bx_2 = ay_1 + by_2 $ for any constants a and b.

  • Example of a linear system:

$ y(t) = 10x(t) $

  • Example of a nonlinear system:

$ y(t) = x(t)^2 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett