Line 3: | Line 3: | ||
A) <math> 1 + j\sqrt{3}</math> | A) <math> 1 + j\sqrt{3}</math> | ||
− | <math> r = \sqrt{1^2 + \sqrt{3}^2}</math> | + | <math> r = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{4} = 2</math> |
+ | |||
+ | <math>\theta = arctan(\sqrt{3}/1) = arctan(\sqrt{3}) = \frac{\pi}{3}</math> |
Revision as of 00:08, 13 June 2008
Express each of the following complex numbers in polar form, and plot them in the complex plane, indicating the magnitude and angle of each number.
A) $ 1 + j\sqrt{3} $
$ r = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{4} = 2 $
$ \theta = arctan(\sqrt{3}/1) = arctan(\sqrt{3}) = \frac{\pi}{3} $