Line 3: Line 3:
 
A) <math> 1 + j\sqrt{3}</math>
 
A) <math> 1 + j\sqrt{3}</math>
  
<math> r = \sqrt{1^2 + \sqrt{3}^2}</math>
+
<math> r = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{4} = 2</math>
 +
 
 +
<math>\theta = arctan(\sqrt{3}/1) = arctan(\sqrt{3}) = \frac{\pi}{3}</math>

Revision as of 00:08, 13 June 2008

Express each of the following complex numbers in polar form, and plot them in the complex plane, indicating the magnitude and angle of each number.

A) $ 1 + j\sqrt{3} $

$ r = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{4} = 2 $

$ \theta = arctan(\sqrt{3}/1) = arctan(\sqrt{3}) = \frac{\pi}{3} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood