(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[https://balthier.ecn.purdue.edu/index.php/ Algebra_Study The website]
+
This is the kiwi page for material relevent to the course MA553: Introduction to Abstract Algebra.
 +
 
 +
==Main Topics of the Course==
 +
 
 +
# [[Group Theory_OldKiwi]]
 +
## [[Isomorphism Theorems_OldKiwi]]
 +
## [[Sylow Theorems_OldKiwi]]
 +
## [[Jordan-Holder_OldKiwi]]
 +
# [[Ring Theory_OldKiwi]]
 +
## [[Isomorphism Theorems_OldKiwi]]
 +
## [[Unique Factorization Domains_OldKiwi]]
 +
## [[Principal Ideal Domains_OldKiwi]]
 +
## [[Euclidean Domains_OldKiwi]]
 +
## [[Polynomial Rings_OldKiwi]]
 +
# [[Field Theory_OldKiwi]]
 +
## [[Field Extensions_OldKiwi]]
 +
## [[Algebraic Closures_OldKiwi]]
 +
## [[Roots Of Unity_OldKiwi]]
 +
# [[Galois Theory_OldKiwi]]
 +
# [[New Topic_OldKiwi]]
 +
 
 +
==Other Topics==
 +
Add other relevent/interesting pages here:
 +
 
 +
You can use latex in Kiwi, here is a
 +
[http://www.stdout.org/~winston/latex/ Latex Cheat Sheet]
 +
 
 +
Sample latex equation:
 +
<math>Arclength = s(t) = \int_{0}^{t} \sqrt{x'(\xi)^{2} + y'(\xi)^{2}}d\xi</math>

Latest revision as of 11:35, 10 June 2008

This is the kiwi page for material relevent to the course MA553: Introduction to Abstract Algebra.

Main Topics of the Course

  1. Group Theory_OldKiwi
    1. Isomorphism Theorems_OldKiwi
    2. Sylow Theorems_OldKiwi
    3. Jordan-Holder_OldKiwi
  2. Ring Theory_OldKiwi
    1. Isomorphism Theorems_OldKiwi
    2. Unique Factorization Domains_OldKiwi
    3. Principal Ideal Domains_OldKiwi
    4. Euclidean Domains_OldKiwi
    5. Polynomial Rings_OldKiwi
  3. Field Theory_OldKiwi
    1. Field Extensions_OldKiwi
    2. Algebraic Closures_OldKiwi
    3. Roots Of Unity_OldKiwi
  4. Galois Theory_OldKiwi
  5. New Topic_OldKiwi

Other Topics

Add other relevent/interesting pages here:

You can use latex in Kiwi, here is a Latex Cheat Sheet

Sample latex equation: $ Arclength = s(t) = \int_{0}^{t} \sqrt{x'(\xi)^{2} + y'(\xi)^{2}}d\xi $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang