(New page: This page is waiting for your contributions!) |
(→Other Topics) |
||
(39 intermediate revisions by 12 users not shown) | |||
Line 1: | Line 1: | ||
− | + | == General Course Information == | |
+ | ECE 301 | ||
+ | |||
+ | Summer 2008 | ||
+ | |||
+ | Instructor: Aung Kyi San | ||
+ | |||
+ | Lecture: M T W Th F 9:50 am - 10:50 am @ EE 117 | ||
+ | |||
+ | Office Hours: M W 11:00 am - 12:00 am | ||
+ | |||
+ | Email : asan@purdue.edu | ||
+ | |||
+ | == Main Topics of the Course == | ||
+ | |||
+ | #Lecture 1 | ||
+ | ##[[Signal Energy and Power_OldKiwi]] | ||
+ | ##[[Transformation of the independent variable_OldKiwi]] | ||
+ | #Lecture 2 | ||
+ | ##[[Periodic Signals_OldKiwi]] | ||
+ | ##[[Even and Odd Signals_OldKiwi]] | ||
+ | ##[[Exponential and Sinusoidal signals (CT)_OldKiwi]] | ||
+ | #Lecture 3 | ||
+ | ##[[Exponential and Sinusoidal signals (DT)_OldKiwi]] | ||
+ | ##[[The unit impulse and unit step functions_OldKiwi]] | ||
+ | #Lecture 4 | ||
+ | ##[[Continuous-Time and Discrete-Time_OldKiwi]] | ||
+ | ##[[Basic System Properties_OldKiwi]] | ||
+ | #Lecture 5 | ||
+ | ##[[DT LTI systems: The convolution sum_OldKiwi]] | ||
+ | #Lecture 6 | ||
+ | ##[[CT LTI systems: The convolution integral_OldKiwi]] | ||
+ | #Lecture 7 | ||
+ | ##[[Properties of LTI systems_OldKiwi]] | ||
+ | ##[[Unit step response of an LTI system_OldKiwi]] | ||
+ | #Lecture 8 | ||
+ | ##[[LTI systems described by differential equations(CT) and difference equation(DT)_OldKiwi]] | ||
+ | ##[[Response of LTI systems to complex exponentials_OldKiwi]] | ||
+ | #Lecture 9 | ||
+ | ##[[Response of LTI systems to complex exponentials_OldKiwi]] | ||
+ | ##[[Fourier Series representation of continuous-time periodic signals_OldKiwi]] | ||
+ | #Lecture 10 | ||
+ | ##[[Fourier Series Representation of CT periodic signals_OldKiwi]] | ||
+ | ##[[Properties of CT Fourier Series_OldKiwi]] | ||
+ | #Lecture 11 | ||
+ | ##[[Fourier Series Representation of CT periodic signals using properties_OldKiwi]] | ||
+ | ##[[Fourier Series Representation of DT periodic signals_OldKiwi]] | ||
+ | #Lecture 12 | ||
+ | ##[[Properties of discrete time Fourier Series_OldKiwi]] | ||
+ | ##[[Fourier Series and LTI Systems_OldKiwi]] | ||
+ | #Lecture 13 | ||
+ | ##[[CT Fourier Transform_OldKiwi]] | ||
+ | #Lecture 14 | ||
+ | ##[[Convergence of Fourier Transform_OldKiwi]] | ||
+ | ##[[Fourier Transform of periodic signals_OldKiwi]] | ||
+ | ##[[Properties of Continuous Fourier Transforms_OldKiwi]] | ||
+ | #Lecture 15 | ||
+ | ##[[Applications of Convolution Property_OldKiwi]] | ||
+ | ##[[Applications of Multiplication Property_OldKiwi]] | ||
+ | ##[[Frequency selective filtering_OldKiwi]] | ||
+ | #Lecture 16 | ||
+ | ##[[Frequency selective filtering_OldKiwi]] | ||
+ | ##[[CT LTI systems charachterized by LCCDE_OldKiwi]] | ||
+ | #Lecture 17 | ||
+ | ##[[Communication Systems_OldKiwi]] | ||
+ | ##[[ Complex Exponential And Sinusoidal_OldKiwi]] | ||
+ | ##[[ Amplitude Modulation (AM_OldKiwi]] | ||
+ | ##[[ Demodulation for AM_OldKiwi]] | ||
+ | #Lecture 18 | ||
+ | ##[[Frequency Division Multiplextion (FDM)_OldKiwi]] | ||
+ | ##[[Single-Sideband Sinusoidal AM_OldKiwi]] | ||
+ | ##[[AM with a pluse-train carrier_OldKiwi]] | ||
+ | #Lecture 19 | ||
+ | ##[[ Discrete-time Fourir Transform_OldKiwi]] | ||
+ | ##[[DTFT for periodic signals_OldKiwi]] | ||
+ | ##[[Properties of DTFT_OldKiwi]] | ||
+ | #Lecture 20 | ||
+ | ##[[Tables 5.1 and 5.2_OldKiwi]] | ||
+ | ##[[LTI systems characterized by LCCDEs_OldKiwi]] | ||
+ | #Lecture 21 | ||
+ | ##[[Duality_OldKiwi]] | ||
+ | ##[[ CTFT_OldKiwi]] | ||
+ | ##[[ DTFS_OldKiwi]] | ||
+ | ##[[ CRFS & DTFT_OldKiwi]] | ||
+ | #Lecture 22 | ||
+ | ##[[Sampling_OldKiwi]] | ||
+ | ##[[Representation of a CT signalby its samples:_OldKiwi]] | ||
+ | ##[[ The Sampling Theorem_OldKiwi]] | ||
+ | |||
+ | == Homework Problems == | ||
+ | |||
+ | #[[Homework 1 - Summer 08_OldKiwi]] | ||
+ | #[[Homework 2 - Summer 08_OldKiwi]] | ||
+ | #[[Homework 3 - Summer 08_OldKiwi]] | ||
+ | #[[Homework 4 - Missing 3.28 & 4.4b_OldKiwi]] | ||
+ | #[[Homework 4 - 4.4b_OldKiwi]] | ||
+ | #[[Homework 5 - Missing 4.45, 4.46 & 4.49_OldKiwi]] | ||
+ | #[[Homework 5 - Missing First three and last one_OldKiwi]] | ||
+ | #[[Homework 6 - Don't know 5.8_OldKiwi]] | ||
+ | |||
+ | == Exams == | ||
+ | |||
+ | #[[Exam 1 - Summer 08_OldKiwi]] | ||
+ | #[[ECE301:SanSummer08:Exam II_OldKiwi]] | ||
+ | |||
+ | == Bonus Problems == | ||
+ | |||
+ | #[[Bonus 2 - Summer 08_OldKiwi]] | ||
+ | #[[Bonus 3 - Exam I_OldKiwi]] | ||
+ | #[[Bonus 5 - Exam I_OldKiwi]] | ||
+ | #[[Bonus 6 - Convolution Proofs_OldKiwi]] | ||
+ | #[[Bonus 12 - Exam II_OldKiwi]] | ||
+ | #[[Bonus 12 scores_OldKiwi]] | ||
+ | |||
+ | ==Other Topics== | ||
+ | Add other relevent/interesting pages here: | ||
+ | |||
+ | You can use latex in Kiwi, here is a | ||
+ | [http://www.stdout.org/~winston/latex/ Latex Cheat Sheet] | ||
+ | |||
+ | [[Category:ECE 301 San Summer 2008]] | ||
+ | |||
+ | #[[Practice Problems - Exam 1_OldKiwi]] | ||
+ | #[[Exam 1 Formula's_OldKiwi]] | ||
+ | #[[Practice Midterm 2 - Aung Kyi San Summer 2005 Solutions_OldKiwi]] |
Latest revision as of 10:32, 25 July 2008
Contents
General Course Information
ECE 301
Summer 2008
Instructor: Aung Kyi San
Lecture: M T W Th F 9:50 am - 10:50 am @ EE 117
Office Hours: M W 11:00 am - 12:00 am
Email : asan@purdue.edu
Main Topics of the Course
- Lecture 1
- Lecture 2
- Lecture 3
- Lecture 4
- Lecture 5
- Lecture 6
- Lecture 7
- Lecture 8
- Lecture 9
- Lecture 10
- Lecture 11
- Lecture 12
- Lecture 13
- Lecture 14
- Lecture 15
- Lecture 16
- Lecture 17
- Lecture 18
- Lecture 19
- Lecture 20
- Lecture 21
- Lecture 22
Homework Problems
- Homework 1 - Summer 08_OldKiwi
- Homework 2 - Summer 08_OldKiwi
- Homework 3 - Summer 08_OldKiwi
- Homework 4 - Missing 3.28 & 4.4b_OldKiwi
- Homework 4 - 4.4b_OldKiwi
- Homework 5 - Missing 4.45, 4.46 & 4.49_OldKiwi
- Homework 5 - Missing First three and last one_OldKiwi
- Homework 6 - Don't know 5.8_OldKiwi
Exams
Bonus Problems
- Bonus 2 - Summer 08_OldKiwi
- Bonus 3 - Exam I_OldKiwi
- Bonus 5 - Exam I_OldKiwi
- Bonus 6 - Convolution Proofs_OldKiwi
- Bonus 12 - Exam II_OldKiwi
- Bonus 12 scores_OldKiwi
Other Topics
Add other relevent/interesting pages here:
You can use latex in Kiwi, here is a Latex Cheat Sheet