Line 1: Line 1:
 
a)
 
a)
  
g(x)+h(x)=0
+
<math>g(x)+h(x)=0</math>
  
g(x) even h(x) odd
+
<math>g(x)</math> even <math>h(x)</math> odd
  
 
g is both even and odd
 
g is both even and odd
  
g(x)=g(-x)=-g(x)
+
<math>g(x)=g(-x)=-g(x)</math>
  
 
b)
 
b)

Latest revision as of 07:43, 6 October 2008

a)

$ g(x)+h(x)=0 $

$ g(x) $ even $ h(x) $ odd

g is both even and odd

$ g(x)=g(-x)=-g(x) $

b)

$ f(x)=f_{e}(x)+f_{0}(x) $

$ f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x) $

solve for $ f_{e}(x) $ and $ f_{0}(x) $

$ f_{e}(x)= (f(x)+f(-x))/2 $

$ f_{0}(x)= (f(x)-f(-x))/2 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood