m
Line 15: Line 15:
 
<math>f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x)</math>
 
<math>f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x)</math>
  
<math>solve for f_{e}(x) and f_{0}(x)</math>
+
solve for <math>f_{e}(x)</math> and <math>f_{0}(x)</math>
  
 
<math>f_{e}(x)= (f(x)+f(-x))/2</math>
 
<math>f_{e}(x)= (f(x)+f(-x))/2</math>
  
 
<math>f_{0}(x)= (f(x)-f(-x))/2</math>
 
<math>f_{0}(x)= (f(x)-f(-x))/2</math>

Revision as of 07:42, 6 October 2008

a)

g(x)+h(x)=0

g(x) even h(x) odd

g is both even and odd

g(x)=g(-x)=-g(x)

b)

$ f(x)=f_{e}(x)+f_{0}(x) $

$ f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x) $

solve for $ f_{e}(x) $ and $ f_{0}(x) $

$ f_{e}(x)= (f(x)+f(-x))/2 $

$ f_{0}(x)= (f(x)-f(-x))/2 $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett