m
 
(One intermediate revision by one other user not shown)
Line 6: Line 6:
 
<math>x, y, z \in X</math>
 
<math>x, y, z \in X</math>
  
1. <math>d(x,y)=d(y,x)</math>
+
#<math>d(x,y)=d(y,x)</math>
 
+
#<math>d(x,z)\leq d(x,y)+d(y,z)</math>
2. <math>d(x,z)\leq d(x,y)+d(y,z)</math>
+
#<math>d(x,y) \geq 0, d(x,y)=0 \Leftrightarrow x=y)</math>
 
+
3. <math>d(x,y) \geq 0, d(x,y)=0 \Leftrightarrow x=y)</math>
+
  
 
If X is vector space, metric can be induced by the norm <math>||\cdot||</math>.
 
If X is vector space, metric can be induced by the norm <math>||\cdot||</math>.
Line 20: Line 18:
 
<math>||\cdot||: X \rightarrow \Re ^{+}</math>
 
<math>||\cdot||: X \rightarrow \Re ^{+}</math>
  
1. <math>|x| \geq 0, ||x||=0 \Leftrightarrow x=0</math>
+
#<math>|x| \geq 0, ||x||=0 \Leftrightarrow x=0</math>
2. <math>||\alpha x||=|\alpha | ||x||</math>
+
#<math>||\alpha x||=|\alpha | ||x||</math>
3. <math>||x+y|| \leq ||x|| + ||y||</math>
+
#<math>||x+y|| \leq ||x|| + ||y||</math>
  
 +
[[Category:ECE662]]
 
Defining metric, we can measure similarity of elements of set X.
 
Defining metric, we can measure similarity of elements of set X.
  
 
Example of metric
 
Example of metric
1. Minkowski Metric <math> \left( \sum_{i=1}^n \left| x_i - y_i \right|^p \right)^{1/p}</math>
+
#Minkowski Metric <math> \left( \sum_{i=1}^n \left| x_i - y_i \right|^p \right)^{1/p}</math>
 
+
#Riemannian Metric <math>D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})}</math>
2. Riemannian Metric <math>D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})}</math>
+
#Tanimoto metric <math>D(S_1, S_2) = \frac {|S_1|+|S_2|-2|S_1 \bigcap S_2| }{|S_1|+|S_2|-|S_1 \bigcap S_2|} </math>
 
+
#Procrustes metric <math>D(p,\bar p)= min_{R,T} \sum_{i=1}^n
3. Tanimoto metric <math>D(S_1, S_2) = \frac {|S_1|+|S_2|-2|S_1 \bigcap S_2| }{|S_1|+|S_2|-|S_1 \bigcap S_2|} </math>
+
 
+
4. Procrustes metric <math>D(p,\bar p)= min_{R,T} \sum_{i=1}^n
+
 
{\begin{Vmatrix} Rp_i+T-\bar p_i \end{Vmatrix}} _{L^2} </math>, R: Rotation, T: Translation
 
{\begin{Vmatrix} Rp_i+T-\bar p_i \end{Vmatrix}} _{L^2} </math>, R: Rotation, T: Translation

Latest revision as of 08:34, 10 April 2008

Metric Space (X,d) $ d:X \times X \rightarrow \Re ^{+} $

X is set, not necessarily vector space

$ x, y, z \in X $

  1. $ d(x,y)=d(y,x) $
  2. $ d(x,z)\leq d(x,y)+d(y,z) $
  3. $ d(x,y) \geq 0, d(x,y)=0 \Leftrightarrow x=y) $

If X is vector space, metric can be induced by the norm $ ||\cdot|| $.

$ d(x,y)=||y-x|| $

Norm is defined as follows

$ ||\cdot||: X \rightarrow \Re ^{+} $

  1. $ |x| \geq 0, ||x||=0 \Leftrightarrow x=0 $
  2. $ ||\alpha x||=|\alpha | ||x|| $
  3. $ ||x+y|| \leq ||x|| + ||y|| $

Defining metric, we can measure similarity of elements of set X.

Example of metric

  1. Minkowski Metric $ \left( \sum_{i=1}^n \left| x_i - y_i \right|^p \right)^{1/p} $
  2. Riemannian Metric $ D(\vec{x_1},\vec{x_2})=\sqrt{(\vec{x_1}-\vec{x_2})^\top \mathbb{M}(\vec{x_1}-\vec{x_2})} $
  3. Tanimoto metric $ D(S_1, S_2) = \frac {|S_1|+|S_2|-2|S_1 \bigcap S_2| }{|S_1|+|S_2|-|S_1 \bigcap S_2|} $
  4. Procrustes metric $ D(p,\bar p)= min_{R,T} \sum_{i=1}^n {\begin{Vmatrix} Rp_i+T-\bar p_i \end{Vmatrix}} _{L^2} $, R: Rotation, T: Translation

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics