(New page: For the discrete time L.T.I. system described by <math>y[n]-\frac{1}{2}y[n-1]=x[n]+\frac{1}{2}x[n-1] </math> Find the frequency response H(|omega|) and the impulse response h[n] of the ...)
 
m (math tag fix)
 
(One intermediate revision by one other user not shown)
Line 29: Line 29:
 
   for n = 0
 
   for n = 0
  
   <math> h[n] = 1
+
   <math> h[n] = 1 </math>
  
 
   for n > 0
 
   for n > 0
  
 
   <math> h[n] = {\left(\frac{1}{2} \right)}^{n-1}</math>
 
   <math> h[n] = {\left(\frac{1}{2} \right)}^{n-1}</math>
 +
 +
Next : [[Geometric Series Note_OldKiwi]]

Latest revision as of 18:08, 4 April 2008

For the discrete time L.T.I. system described by

$ y[n]-\frac{1}{2}y[n-1]=x[n]+\frac{1}{2}x[n-1] $

Find the frequency response H(|omega|) and the impulse response h[n] of the system.

    • Frequency Response:**

1: Take the Fourier transform ([Meaning of Fourier Transform]) of the equation,

  $  Y(\omega)-\frac{1}{2}{e}^{-j\omega}Y(\omega)=X(\omega)+\frac{1}{2}{e}^{-j\omega}X(\omega) $

2: Solve for Y(|omega|)/X(|omega|) which is the frequency response H(|omega|),

  .. $  H(\omega)=\frac{Y(\omega)}{X(\omega)}=\frac{1+\frac{1}{2}{e}^{-j\omega}}{1-\frac{1}{2}{e}^{-j\omega}} $
    • Impulse Response:**

1: Expand into two terms using partial fraction expansion ([Guide to Partial Fraction Expansion]) to facilitate use of inverse Fourier transform,

  $  H(\omega)=\frac{1}{1-\frac{1}{2}{e}^{-j\omega}}+\frac{1}{2}\frac{{e}^{-j\omega}}{1-\frac{1}{2}{e}^{-j\omega}} $

2: Take the inverse Fourier transform of H(|omega|) ([Fourier Transform Table]),

   $ h[n]={\left(\frac{1}{2} \right)}^{n}u[n]+\frac{1}{2}{\left(\frac{1}{2} \right)}^{n-1}u[n-1] $

3: Simplify is so inclined,

  for n = 0
  $  h[n] = 1  $
  for n > 0
  $  h[n] = {\left(\frac{1}{2} \right)}^{n-1} $

Next : Geometric Series Note_OldKiwi

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett