(6 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
I tried setting 'u' equal to '1+e^x' and 'du' equal to 'e^x dx'. Anyone know where to go from here? I'm sure there's some kind of manipulation that needs to be pulled off. I'll tell you if I figure it out.[[User:Gbrizend|Gbrizend]] | I tried setting 'u' equal to '1+e^x' and 'du' equal to 'e^x dx'. Anyone know where to go from here? I'm sure there's some kind of manipulation that needs to be pulled off. I'll tell you if I figure it out.[[User:Gbrizend|Gbrizend]] | ||
− | Alright, I factored out a <math> e^x </math>. I set 'u' equal to <math> 1+\frac{1}{e^x} </math> and 'du' to <math> -1\frac{1}{e^x} dx </math>. The problem looks like this: <math> \int \frac{dx}{e^x(1+\frac{1}{e^x})} </math>. Substitute with u and du. I got this answer: <math> -Ln|1+\frac{1}{e^x}| + C </math> | + | Alright, I factored out a <math> e^x </math>. I set 'u' equal to <math> 1+\frac{1}{e^x} </math> and 'du' to <math> -1\frac{1}{e^x} dx </math>. The problem looks like this: <math> \int \frac{dx}{e^x(1+\frac{1}{e^x})} </math>. Substitute with u and du. I got this answer: <math> -Ln|1+\frac{1}{e^x}| + C.</math> |
+ | |||
+ | Good work. That last integral is easier to look at if you write <math>e^{-x}</math> in place of <math>\frac{1}{e^x}</math>. | ||
+ | In fact, if you multiply the numerator and the denominator by <math>e^{-x}</math>, the integral becomes | ||
+ | |||
+ | <math>\int\frac{1}{1+e^{-x}}\ e^{-x}\ dx =\int-\frac{1}{u}\ du,</math> | ||
+ | |||
+ | where <math>u=1+e^{-x}</math>. | ||
Here's another way. Let <math>u=1+e^x</math>. Then <math>du=e^x dx</math> and <math>e^x=u-1</math>. If I multiply | Here's another way. Let <math>u=1+e^x</math>. Then <math>du=e^x dx</math> and <math>e^x=u-1</math>. If I multiply | ||
and divide by <math>e^x</math> in order to get a <math>du</math> in the numerator, I get | and divide by <math>e^x</math> in order to get a <math>du</math> in the numerator, I get | ||
− | <math>\int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x) = \int\frac{du}{( | + | <math>\int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x)} = \int\frac{du}{(u-1)u}= |
+ | \int\left[\frac{1}{u-1}-\frac{1}{u}\right]\ du</math> | ||
− | + | via the method of Partial Fractions. |
Latest revision as of 06:50, 3 October 2008
Evaluate the integral: $ \int \frac{dx}{1+e^x} $
I tried setting 'u' equal to '1+e^x' and 'du' equal to 'e^x dx'. Anyone know where to go from here? I'm sure there's some kind of manipulation that needs to be pulled off. I'll tell you if I figure it out.Gbrizend
Alright, I factored out a $ e^x $. I set 'u' equal to $ 1+\frac{1}{e^x} $ and 'du' to $ -1\frac{1}{e^x} dx $. The problem looks like this: $ \int \frac{dx}{e^x(1+\frac{1}{e^x})} $. Substitute with u and du. I got this answer: $ -Ln|1+\frac{1}{e^x}| + C. $
Good work. That last integral is easier to look at if you write $ e^{-x} $ in place of $ \frac{1}{e^x} $. In fact, if you multiply the numerator and the denominator by $ e^{-x} $, the integral becomes
$ \int\frac{1}{1+e^{-x}}\ e^{-x}\ dx =\int-\frac{1}{u}\ du, $
where $ u=1+e^{-x} $.
Here's another way. Let $ u=1+e^x $. Then $ du=e^x dx $ and $ e^x=u-1 $. If I multiply and divide by $ e^x $ in order to get a $ du $ in the numerator, I get
$ \int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x)} = \int\frac{du}{(u-1)u}= \int\left[\frac{1}{u-1}-\frac{1}{u}\right]\ du $
via the method of Partial Fractions.