(New page: <center> The basic estimate for the rectangle method </center> Suppose that <math>f(x)</math> is a continuously differentiable function on <math>[a,b]</math>. Let <math>N</math> be a pos...)
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<center>
 
<center>
The basic estimate for the rectangle method
+
=The basic estimate for the rectangle method=
 
</center>
 
</center>
  
 
Suppose that <math>f(x)</math> is a continuously differentiable function on
 
Suppose that <math>f(x)</math> is a continuously differentiable function on
 
<math>[a,b]</math>.  Let <math>N</math> be a positive integer and let
 
<math>[a,b]</math>.  Let <math>N</math> be a positive integer and let
<math>M=\text{Max}\ |f'(x)|: a\le x\le b\}</math>.  Define <math>R_N</math>
+
<math>M=\text{Max}\ \{ |f'(x)|: a\le x\le b\}</math>.  Define <math>R_N</math>
to the the ''right endpoint'' Riemann Sum
+
to be the the ''right endpoint'' Riemann Sum
  
 
<math>R_N = \sum_{n=1}^N f(a+n\Delta x)\Delta x</math>
 
<math>R_N = \sum_{n=1}^N f(a+n\Delta x)\Delta x</math>

Latest revision as of 02:31, 16 September 2008

The basic estimate for the rectangle method

Suppose that $ f(x) $ is a continuously differentiable function on $ [a,b] $. Let $ N $ be a positive integer and let $ M=\text{Max}\ \{ |f'(x)|: a\le x\le b\} $. Define $ R_N $ to be the the right endpoint Riemann Sum

$ R_N = \sum_{n=1}^N f(a+n\Delta x)\Delta x $

where $ \Delta x = (b-a)/N $, and let

$ I=\int_a^b f(x)\ dx $.

We shall prove that the error, $ E=|R_N-I| $ satisfies the estimate,

$ E\le \frac{M(b-a)^2}{N} $.

Alumni Liaison

EISL lab graduate

Mu Qiao