(New page: This page and its subtopics discusses about Support Vector Machines Lectures discussing Support Vector Machines :[Lecture11], [Lecture12] and [Lecture13] * Other related sites: * http:...)
 
Line 24: Line 24:
  
 
Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.
 
Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.
 +
 +
[[Category:needs work]]

Revision as of 11:28, 17 March 2008

This page and its subtopics discusses about Support Vector Machines

Lectures discussing Support Vector Machines :[Lecture11], [Lecture12] and [Lecture13]

  • Other related sites:

`A Tutorial on Support Vector Machines for Pattern Recognition <http://citeseer.ist.psu.edu/cache/papers/cs/26235/http:zSzzSzwww.isi.uu.nlzSzMeetingszSz..zSzTGVzSzfinal1.pdf/burges98tutorial.pdf>`_

`Support Vector Machines for 3D Object Recognition <http://ieeexplore.ieee.org/iel4/34/15030/00683777.pdf?isnumber=15030&prod=JNL&arnumber=683777&arSt=637&ared=646&arAuthor=Pontil%2C+M.%3B+Verri%2C+A.>`_

Here is a good webpage containing links to effective Support Vector Machines packages, written in C/C++. Matlab, applicable for binary/multi- calss classifications. <http://www.svms.org/software.html>

Purdue link: http://www2.lib.purdue.edu:2483/10.1145/130385.130401

ACM link: http://doi.acm.org/10.1145/130385.130401

  • Journal References

M.A. Aizerman, E.M. Braverman, L.I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Control, 1964, Vol. 25, pp. 821-837.

Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett