(New page: <center> The basic estimate for the rectangle method </center> Suppose that <math>f(x)</math> is a continuously differentiable function on <math>[a,b]</math>. Let <math>N</math> be a pos...)
 
Line 1: Line 1:
 
<center>
 
<center>
The basic estimate for the rectangle method
+
=The basic estimate for the rectangle method=
 
</center>
 
</center>
  

Revision as of 13:42, 14 September 2008

The basic estimate for the rectangle method

Suppose that $ f(x) $ is a continuously differentiable function on $ [a,b] $. Let $ N $ be a positive integer and let $ M=\text{Max}\ |f'(x)|: a\le x\le b\} $. Define $ R_N $ to the the right endpoint Riemann Sum

$ R_N = \sum_{n=1}^N f(a+n\Delta x)\Delta x $

where $ \Delta x = (b-a)/N $, and let

$ I=\int_a^b f(x)\ dx $.

We shall prove that the error, $ E=|R_N-I| $ satisfies the estimate,

$ E\le \frac{M(b-a)^2}{N} $.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang