Line 5: | Line 5: | ||
'''LECTURE THEME''' : | '''LECTURE THEME''' : | ||
- ''Discriminant Functions'' | - ''Discriminant Functions'' | ||
+ | |||
'''Discriminant Functions''': one way of representing classifiers | '''Discriminant Functions''': one way of representing classifiers | ||
Line 23: | Line 24: | ||
In other words, we can take <math>g_i(x) \rightarrow f(g_i(x))</math> for any monotonically increasing function ''f''. | In other words, we can take <math>g_i(x) \rightarrow f(g_i(x))</math> for any monotonically increasing function ''f''. | ||
+ | |||
'''Relation to Bayes Rule''' | '''Relation to Bayes Rule''' | ||
Line 39: | Line 41: | ||
<math>\Longleftrightarrow g_i(\mathbf(x)) = ln(p(\mathbf(x)|\omega_i)P(\omega_i)) = ln(p(\mathbf(x)|\omega_i))+ln(P(\omega_i)</math> | <math>\Longleftrightarrow g_i(\mathbf(x)) = ln(p(\mathbf(x)|\omega_i)P(\omega_i)) = ln(p(\mathbf(x)|\omega_i))+ln(P(\omega_i)</math> | ||
+ | |||
+ | '''OR''' we can take | ||
+ | |||
+ | <math> g_i(\mathbf(x)) = ln(p(\mathbf(x)|\omega_i)P(\omega_i)) = ln(p(\mathbf(x)|\omega_i))+ln(P(\omega_i)</math> | ||
+ | |||
+ | We can take any <math>g_i</math> as long as they have the same ordering in value as specified by Bayes rule. | ||
+ | |||
+ | Some useful links: | ||
+ | |||
+ | - Bayes Rule in notes: https://engineering.purdue.edu/people/mireille.boutin.1/ECE301kiwi/Lecture4 | ||
+ | |||
+ | - Bayesian Inference: http://en.wikipedia.org/wiki/Bayesian_inference | ||
+ | |||
+ | |||
+ | '''Relational Decision Boundary''' | ||
+ | |||
+ | Ex : take two classes <math>\omega_1</math> and <math>\omega_2</math> | ||
+ | |||
+ | <math>g(\vec x)=g_1(\vec x)-g_2(\vec x)</math> | ||
+ | |||
+ | decide <math>\omega_1</math> when <math>g(\vec x)>0 </math> | ||
+ | |||
+ | and <math>\omega_2</math> when <math>g(\vec x)<0 </math> | ||
+ | |||
+ | when <math>g(\vec x) = 0 </math>, you are at the decision boundary ( = hyperplane) |
Revision as of 14:58, 10 March 2008
LECTURE THEME : - Discriminant Functions
Discriminant Functions: one way of representing classifiers
Given the classes $ \omega_1, \cdots, \omega_k $
The discriminant functions $ g_1(x),\ldots, g_K(x) $ such that $ g_i(x) $ n-dim S space $ \rightarrow \Re $
which are used to make decisions as follows:
decide $ \omega_i $ if $ g_i(x) \ge g_j(x), \forall j $
Note that many different choices of $ g_i(x) $ will yield the same decision rule, because we are interested in the order of values of $ g_i(x) $ for each x, and not their exact values.
For example: $ g_i(x) \rightarrow 2(g_i(x)) $ or $ g_i(x) \rightarrow ln(g_i(x)) $
In other words, we can take $ g_i(x) \rightarrow f(g_i(x)) $ for any monotonically increasing function f.
Relation to Bayes Rule
e.g. We can take $ g_i(\mathbf(x)) = P(\omega_i|\mathbf(x)) $
then $ g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i $
$ \Longleftrightarrow P(w_i|\mathbf(X)) > P(w_j|\mathbf(X)), \forall j \neq i $
OR we can take
$ g_i(\mathbf(x)) = p(\mathbf(x)|\omega_i)P(\omega_i) $
then $ g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i $
$ \Longleftrightarrow g_i(\mathbf(x)) = ln(p(\mathbf(x)|\omega_i)P(\omega_i)) = ln(p(\mathbf(x)|\omega_i))+ln(P(\omega_i) $
OR we can take
$ g_i(\mathbf(x)) = ln(p(\mathbf(x)|\omega_i)P(\omega_i)) = ln(p(\mathbf(x)|\omega_i))+ln(P(\omega_i) $
We can take any $ g_i $ as long as they have the same ordering in value as specified by Bayes rule.
Some useful links:
- Bayes Rule in notes: https://engineering.purdue.edu/people/mireille.boutin.1/ECE301kiwi/Lecture4
- Bayesian Inference: http://en.wikipedia.org/wiki/Bayesian_inference
Relational Decision Boundary
Ex : take two classes $ \omega_1 $ and $ \omega_2 $
$ g(\vec x)=g_1(\vec x)-g_2(\vec x) $
decide $ \omega_1 $ when $ g(\vec x)>0 $
and $ \omega_2 $ when $ g(\vec x)<0 $
when $ g(\vec x) = 0 $, you are at the decision boundary ( = hyperplane)