(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
a/<math>\mu({|f|>0})>0</math>, so we have
+
'''a)'''
 +
Notice that <math>\mu(\{|f|>0\})>0</math>, so we have
  
 
<math>(\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n}</math>
 
<math>(\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n}</math>
Line 5: Line 6:
 
Taking the limit of both side as <math>n</math> go to infinity, we get
 
Taking the limit of both side as <math>n</math> go to infinity, we get
  
<math>\lim_{n\to \infty}||f||_{n} = ||f||_{\infty}</math>
+
<math>\lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty}</math>
 +
 
 +
Let <math>M<||f||_{\infty} </math>, and <math>E=\{|f|>M\}</math>, then
 +
 
 +
<math>\lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n} = M</math>
 +
 
 +
So, <math>(\int_{X}|f|^{n})^{1/n} \geq (\mu(X)||f||_{\infty})^{1/n}</math>
 +
 
 +
and we have the identity.
 +
 
 +
Notice that it is true for true for finite measure space.
 +
 
 +
'''b)'''
 +
<math>\lim_{n\to\infty}\frac{\int_{X}|f|^{n+1}}{\int_{X}|f|^{n}} = \lim_{n\to\infty}\frac{(||f||_{n+1})^{n+1}}{(||f||_{n})^{n}} = \frac{(||f||_{\infty})^{n+1}}{(||f||_{\infty})^{n}}=||f||_{\infty}</math>
 +
 
 +
'''c)'''
 +
If the space is of infinite measure, it is not true. Let <math>f(x)=1</math> for all real <math>x</math>, we have a counter example.

Latest revision as of 13:50, 11 July 2008

a) Notice that $ \mu(\{|f|>0\})>0 $, so we have

$ (\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n} $

Taking the limit of both side as $ n $ go to infinity, we get

$ \lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty} $

Let $ M<||f||_{\infty} $, and $ E=\{|f|>M\} $, then

$ \lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n} = M $

So, $ (\int_{X}|f|^{n})^{1/n} \geq (\mu(X)||f||_{\infty})^{1/n} $

and we have the identity.

Notice that it is true for true for finite measure space.

b) $ \lim_{n\to\infty}\frac{\int_{X}|f|^{n+1}}{\int_{X}|f|^{n}} = \lim_{n\to\infty}\frac{(||f||_{n+1})^{n+1}}{(||f||_{n})^{n}} = \frac{(||f||_{\infty})^{n+1}}{(||f||_{\infty})^{n}}=||f||_{\infty} $

c) If the space is of infinite measure, it is not true. Let $ f(x)=1 $ for all real $ x $, we have a counter example.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett