Difference between revisions of "Jets7.3 Old Kiwi" - Rhea
User
Log in
Actions
View source
History
Recent Changes
Slectures
Squad
Practice
Formulas
Donations
Disclaimer
Home
Print
Revision as of 22:15, 10 July 2008
(
view source
)
Kim598
(
Talk
)
← Older edit
Revision as of 22:31, 10 July 2008
(
view source
)
Kim598
(
Talk
)
(Removing all content from page)
Newer edit →
Line 1:
Line 1:
−
Suppose we know the conclusion of problem 8,
−
Problem 8
−
Let <math> X </math> be a finite measure space. If <math> f </math> is measurable, let
−
−
<math>E_n = \{x \in X : n-1 \leq |f(x)| < n \}</math>. Then
−
−
<math>f \in L^1</math> if and only if <math>\sum_{n=1}^{\infty}nm(E_n) < \infty.</math>
−
−
First, if <math> m(X)= \infty </math>, it's done. Hence let's suppose that <math> m(X)<\infty </math>
−
−
Now, WTS that <math> f \in L^{p} </math>, which is equivalent to show that <math> |f|^p \in L^{1} </math>
−
−
Let <math> D_n=\{x \in X : |f(x)| \geq n \}</math>. Then <math> \sum_{n=0}^{\infty}m(D_n)=\sum_{n=0}^{\infty}(n+1)m(E_n)</math>. Thus,
−
−
<math> \sum_{n=0}^{\infty}m(D_n)=\sum_{n=0}^{\infty}(n+1)m(E_n)=\sum_{n=0}^{\infty}m(E_n)+\sum_{n=0}^{\infty}nm(E_n)=m(X)+\sum_{n=0}^{\infty}nm(E_n)</math>.
Revision as of 22:31, 10 July 2008
Shortcuts
Help
Main Wiki Page
Random Page
Special Pages
Log in
Search
Alumni Liaison
Correspondence Chess Grandmaster and Purdue Alumni
Read more »
Prof. Dan Fleetwood
Currently Active Pages
x
+
x
Chat
x