Line 9: Line 9:
 
<math> ~0, ~~|\omega| > 2 </math>
 
<math> ~0, ~~|\omega| > 2 </math>
  
<math> \therefore x(t) = \frac {1}{2\pi} \int_-\infty^\infty X(j\omega)e^{j\omegat}\,d\omega</math>
+
<math> \therefore x(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{jt\omega}\,d\omega </math>

Revision as of 18:55, 1 July 2008

Solution to Prob 4.4b

Its given that X(jw) =

$ ~2, ~~0 \le \omega \le 2 $

$ -2, ~~-2 \le \omega < 0 $

$ ~0, ~~|\omega| > 2 $

$ \therefore x(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{jt\omega}\,d\omega $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett