Line 9: | Line 9: | ||
<math> ~0, ~~|\omega| > 2 </math> | <math> ~0, ~~|\omega| > 2 </math> | ||
− | <math> \therefore x(t) = \frac {1}{2\pi} \int_-\infty^\infty X(j\omega)e^{ | + | <math> \therefore x(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{jt\omega}\,d\omega </math> |
Revision as of 18:55, 1 July 2008
Solution to Prob 4.4b
Its given that X(jw) =
$ ~2, ~~0 \le \omega \le 2 $
$ -2, ~~-2 \le \omega < 0 $
$ ~0, ~~|\omega| > 2 $
$ \therefore x(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{jt\omega}\,d\omega $