Line 8: Line 8:
  
 
<math> ~0, ~~|\omega| > 2 </math>
 
<math> ~0, ~~|\omega| > 2 </math>
 +
 +
<math> \therefore x(t) = \frac {1}{2\pi} \int_-\infty^\infty X(j\omega)e^{j\omegat}\,d\omega</math>

Revision as of 18:54, 1 July 2008

Solution to Prob 4.4b

Its given that X(jw) =

$ ~2, ~~0 \le \omega \le 2 $

$ -2, ~~-2 \le \omega < 0 $

$ ~0, ~~|\omega| > 2 $

$ \therefore x(t) = \frac {1}{2\pi} \int_-\infty^\infty X(j\omega)e^{j\omegat}\,d\omega $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett