Line 14: Line 14:
 
But we had taken the derivative of z(t) to get g(t) (and hence <math> g_k </math>).
 
But we had taken the derivative of z(t) to get g(t) (and hence <math> g_k </math>).
 
<math> \therefore z_k = \left ( \frac{g_k}{jk\omega_o} \right ) </math>
 
<math> \therefore z_k = \left ( \frac{g_k}{jk\omega_o} \right ) </math>
 +
 +
<math> z_k = \left( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) * (1 - (-1)^k) \right)

Revision as of 11:29, 1 July 2008

7b Old Kiwi.jpg

Let $ g(t) = \left ( \frac{dz}{dt} \right ) $

7b1 Old Kiwi.jpg 7b2 Old Kiwi.jpg

Therefore, $ m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

But $ g_k = m_k + n_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

$ \therefore g_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) (-1)^k \right) $

But we had taken the derivative of z(t) to get g(t) (and hence $ g_k $). $ \therefore z_k = \left ( \frac{g_k}{jk\omega_o} \right ) $

$ z_k = \left( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) * (1 - (-1)^k) \right) $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison