(New page: Exam 1, Problem 6 - Summer 2008 a) By Inspection th linear constant-coefficient differential equation that describes the LTI system is: y(t)=1/7x(t)-(1/7)(dy(t)/dt) b) Show that the...)
 
 
(17 intermediate revisions by 4 users not shown)
Line 1: Line 1:
Exam 1, Problem 6 - Summer 2008
+
Read the discussion on discussion page using the discussion page tab. (Aung 11:13pm on 07/18/2008)
 +
--------------------------------------------------------------------------------------------------------------
  
 +
(a) The FT of <math>X(j\omega)</math> of a continuous-time signal x(t) is periodic
 +
MAY BE: -
  
  
a) By Inspection th linear constant-coefficient differential equation that describes the LTI system is:
+
(b) The FT of <math>X(e^{j\omega})</math> of a continuous-time signal x[n] is periodic
 +
YES: <math>X(e^{j\omega})</math> is always periodic with period <math>2\pi</math>
  
y(t)=1/7x(t)-(1/7)(dy(t)/dt)
 
  
  
 +
(c) If the FT of <math>X(e^{j\omega})</math> of a discrete-time signal x[n] is given as: <math>X(e^{j\omega}) = 3 + 3cos(3\omega)</math>, then the signal x[n] is periodic
 +
NO: The inverse transform of this signal is a set of delta functions that are not periodic.
  
b) Show that the impulse response to this LTI system is given by h(t)=e^(-7t)u(t)
 
  
This means that x(t) = delta(t) and y(t) = e^(-7t)u(t)
 
  
e^(-7t)u(t) = (1/7)delta(t) - (1/7)d(e^(-7t)u(t)/dt
+
(d) If the FT of <math>X(j\omega)</math> of a continuous-time signal x(t) consists of only impulses, then x(t) is periodic
 +
MAY BE: -
  
Differentiating (1/7)d(e^(-7t)u(t)/dt requires use of the chain rule.
 
  
This portion of the equation becomes:
 
  
(1/7)(-7)(e^(-7t))u(t) - (1/7)delta(t)(e^(-7t))
+
(e) Lets denote <math>X(j\omega)</math> the FT of a continuous-time non-zero signal x(t).  If x(t) is an odd signal, then:
 +
<math>\int_{-\infty}^{\infty} X(j\omega) d\omega = 0 </math>
 +
YES: this equation is the same as <math>\int_{-\infty}^{\infty} X(j\omega) e^{-j\omega_0t}d\omega = 0</math> where t = 0.
 +
From this we can conclude that x(0) = 0, which always holds true for odd signals.
  
-(1/7)delta(t)(e^(-7t)) is -(1/7)delta(t)(e^(-7t)) evaluated at t=0 or -(1/7)delta(t)*1
 
  
Plugging that back in yields:
 
  
e^(-7t)u(t) = (1/7)delta(t) - (1/7)(-7)(e^(-7t))u(t) - (1/7)delta(t)
+
(f) Lets denote <math>X(j\omega)</math> the FT of a continuous-time non-zero signal x(t).  If x(t) is an odd signal, then:
 +
<math>\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = 0 </math>
 +
NO: using parseval's relation, we see that: <math>\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = 0 = 2\pi \int_{-\infty}^\infty |x(t)|^2 dt </math>
 +
The integral of the magnitude squared will always be positive for an odd signal.
  
This equation simplifies to:
 
  
0=0 indicating that it is correct.
 
  
 +
(g) Lets denote <math>X(e^{j0})</math> the FT of a DT signal x[n]. If <math>X(e^{j0})</math> = 0, then x[n] = 0.
 +
MAY BE: <math>X(e^{j0})</math> is simply <math>X(e^{j\omega})</math> evaluated at <math>\omega = 0</math>.
 +
This only tells you that summation of x[n] over all n is 0, not the entire signal x[n] = 0.
  
  
c) Find H(s) at s=jw for the LTI system with impuls response h(t)=e^(-7t)u(t)
 
  
H(s) = Integral(-infinity to infinity)h(t)*e^(-st)dt
+
(h) If the FT (<math>X(e^{j\omega})</math>) of a discrete-time signal x[n] is given as : <math>X(e^{j\omega}) = e^{-j10\omega}/(22.30e^{-j5\omega} + 11.15)</math>  then the signal x[n] is real.
 +
MAY BE: x[n] is real only if the properties of conjugate symmetry for real signals hold for this transform.
  
H(s) = Integral(-infinity to infinity)e^(-7t)u(t)*e^(-st)dt
 
  
Limits change to 0 to infinity and u(t) drops out.
 
  
H(s) = Integral(0 to infinity)e^(-7t)*e^(-st)dt
+
(i) Let x(t) be a continuous time real-valued signal for which <math>X(j\omega)</math> = 0 when <math>|\omega| > \omega_M</math> where <math>\omega_M</math> is a real and positive number. Denote the modulated signal y(t) = x(t)c(t) where c(t) = <math>cos(\omega_ct)</math> and <math>\omega_c</math> is a real, positive number. If <math>\omega_c</math> is greater than <math>2\omega_M</math>, x(t) can be recovered from y(t).
 +
YES: Taking the FT of c(t) we get delta functions at <math>\omega_c</math> and <math>-\omega_c</math>. 
 +
When convolved with the FT of the input signal <math>X(j\omega)</math>, the function <math>X(j\omega)</math> gets shifted to <math>\omega_c</math> and <math>-\omega_c</math>
 +
with ranges <math>(-\omega_c-\omega_M)</math> to <math>(-\omega_c+\omega_M)</math> and <math>(\omega_c-\omega_M)</math> to <math>(\omega_c+\omega_M)</math>.
 +
Therefore <math>(\omega_c-\omega_M) > (-\omega_c+\omega_M)</math> must hold for there to be no
 +
overlapping. This is equivalent to <math>2\omega_c > 2\omega_M  => \omega_c > \omega_M</math>. Since <math>\omega_c > 2\omega_M</math>, there is no overlapping
 +
and x(t) can be recovered.
  
H(s) = Integral(0 to infinity)e^(-7t-st)dt
 
  
H(s) = e^(-7t-st)/(-7-s) evaluated from 0 to inifinity
 
  
H(s) = e^(-7*infinity-s*infinity)/(-7-s) - e^(0)/(-7-s)
+
(j) Let x(t) be a continuous time real-valued signal for which <math>X(j\omega)</math> = 0 when <math>|\omega| > 40\pi</math>. Denote the modulated signal y(t) = x(t)c(t) where c(t) = <math>e^{j\omega_ct}</math> and <math>\omega_c</math> is a real, positive number. There is a constraint of <math>\omega_c</math> to guarantee that x(t) can be recovered from y(t).
 
+
NO: The FT of c(t) is just a shifted delta function, which will simply shift the  
H(s) = e^(-7*infinity-s*infinity)/(-7-s) goes to 0
+
input signal x(t) so there is no chance of overlapping.
 
+
H(s) = 1/(7+s)
+
 
+
H(jw) = 1/(7+jw)
+
 
+
 
+
 
+
 
+
d)Find the output y(t) of the above LTI system when the input x(t) is e^(j7t)
+
 
+
y(t) = x(t) convolved with h(t)
+
 
+
x(t) = e^(j7t)
+
 
+
h(t) = e^(-7t)u(t)
+
 
+
Using the properties of convolution we will choose to convolve using x(t-tau) and h(tau) for simplicity.
+
 
+
y(t) = Integral(-infinity to infinity)e^(j7(t-tau))e^(-7tau)u(tau)dtau
+
 
+
Drop the u(t) and change the integration limits.
+
 
+
y(t) = Integral(0 to infinity)e^(j7(t-tau))e^(-7tau)dtau
+
 
+
Simplify the exponentials.
+
 
+
y(t) = Integral(0 to infinity)e^(-7tau + j7t - j7tau)dtau
+
 
+
y(t) = (e^(-7tau + j7tau - j7tau))/(-7-j7) evaluated from 0 to inifity
+
 
+
y(t) = e^(-infinity)/(-7-j7) + e^(j7t)/(7+7j)
+
 
+
y(t) = e^(j7t)/(7+7j)
+

Latest revision as of 19:48, 30 July 2008

Read the discussion on discussion page using the discussion page tab. (Aung 11:13pm on 07/18/2008)


(a) The FT of $ X(j\omega) $ of a continuous-time signal x(t) is periodic

MAY BE: -


(b) The FT of $ X(e^{j\omega}) $ of a continuous-time signal x[n] is periodic

YES: $ X(e^{j\omega}) $ is always periodic with period $ 2\pi $


(c) If the FT of $ X(e^{j\omega}) $ of a discrete-time signal x[n] is given as: $ X(e^{j\omega}) = 3 + 3cos(3\omega) $, then the signal x[n] is periodic

NO: The inverse transform of this signal is a set of delta functions that are not periodic.


(d) If the FT of $ X(j\omega) $ of a continuous-time signal x(t) consists of only impulses, then x(t) is periodic

MAY BE: -


(e) Lets denote $ X(j\omega) $ the FT of a continuous-time non-zero signal x(t). If x(t) is an odd signal, then: $ \int_{-\infty}^{\infty} X(j\omega) d\omega = 0 $

YES: this equation is the same as $ \int_{-\infty}^{\infty} X(j\omega) e^{-j\omega_0t}d\omega = 0 $ where t = 0. 
From this we can conclude that x(0) = 0, which always holds true for odd signals.


(f) Lets denote $ X(j\omega) $ the FT of a continuous-time non-zero signal x(t). If x(t) is an odd signal, then: $ \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = 0 $

NO: using parseval's relation, we see that: $ \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = 0 = 2\pi \int_{-\infty}^\infty |x(t)|^2 dt  $ 
The integral of the magnitude squared will always be positive for an odd signal.


(g) Lets denote $ X(e^{j0}) $ the FT of a DT signal x[n]. If $ X(e^{j0}) $ = 0, then x[n] = 0.

MAY BE: $ X(e^{j0}) $ is simply $ X(e^{j\omega}) $ evaluated at $ \omega = 0 $. 
This only tells you that summation of x[n] over all n is 0, not the entire signal x[n] = 0.


(h) If the FT ($ X(e^{j\omega}) $) of a discrete-time signal x[n] is given as : $ X(e^{j\omega}) = e^{-j10\omega}/(22.30e^{-j5\omega} + 11.15) $ then the signal x[n] is real.

MAY BE: x[n] is real only if the properties of conjugate symmetry for real signals hold for this transform.


(i) Let x(t) be a continuous time real-valued signal for which $ X(j\omega) $ = 0 when $ |\omega| > \omega_M $ where $ \omega_M $ is a real and positive number. Denote the modulated signal y(t) = x(t)c(t) where c(t) = $ cos(\omega_ct) $ and $ \omega_c $ is a real, positive number. If $ \omega_c $ is greater than $ 2\omega_M $, x(t) can be recovered from y(t).

YES: Taking the FT of c(t) we get delta functions at $ \omega_c $ and $ -\omega_c $.  
When convolved with the FT of the input signal $ X(j\omega) $, the function $ X(j\omega) $ gets shifted to $ \omega_c $ and $ -\omega_c $
with ranges $ (-\omega_c-\omega_M) $ to $ (-\omega_c+\omega_M) $ and $ (\omega_c-\omega_M) $ to $ (\omega_c+\omega_M) $. 
Therefore $ (\omega_c-\omega_M) > (-\omega_c+\omega_M) $ must hold for there to be no 
overlapping. This is equivalent to $ 2\omega_c > 2\omega_M  => \omega_c > \omega_M $. Since $ \omega_c > 2\omega_M $, there is no overlapping 
and x(t) can be recovered.


(j) Let x(t) be a continuous time real-valued signal for which $ X(j\omega) $ = 0 when $ |\omega| > 40\pi $. Denote the modulated signal y(t) = x(t)c(t) where c(t) = $ e^{j\omega_ct} $ and $ \omega_c $ is a real, positive number. There is a constraint of $ \omega_c $ to guarantee that x(t) can be recovered from y(t).

NO: The FT of c(t) is just a shifted delta function, which will simply shift the 
input signal x(t) so there is no chance of overlapping.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood