Line 10: Line 10:
  
 
(b) Show that the system described by  
 
(b) Show that the system described by  
     <math>y[n] = x[n] + x[n+1] + x[n+2]</math> is a LTI system.
+
     y[n] = x[n] + x[n+1] + x[n+2] is a LTI system.
  
     <math>ax_{1}[n]+bx_{2}[n] \rightarrow ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]</math>
+
     ax_{1}[n]+bx_{2}[n] ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]
                    <math>= a(x_{1}[n]+x_{1}[n+1]+x_{1}[n+2])+b(x_{2}[n]+x_{2}[n+1]+x_{2}[n+2])</math>
+
                        = a(x_{1}[n]+x_{1}[n+1]+x_{1}[n+2])+b(x_{2}[n]+x_{2}[n+1]+x_{2}[n+2])
                    <math>= ay_{1}[n]+by_{2}[n]  \therefore </math>System is linear
+
                        = ay_{1}[n]+by_{2}[n]  \therefore System is linear
  
  
     <math>y_{1}[n-n_{0}] = x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2]</math>
+
     y_{1}[n-n_{0}] = x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2]
     Let <math>x_{2} = x_{1}[n-n_{0}]</math>
+
     Let x_{2} = x_{1}[n-n_{0}]
    <math>x_{2}[n] \rightarrow x_{2}[n]+x_{2}[n+1]+x_{2}[n+2]</math>
+
      x_{2}[n] \rightarrow x_{2}[n]+x_{2}[n+1]+x_{2}[n+2]
      
+
     = x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2] = y_{1}[n-n_{0}]
    <math>= x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2] = y_{1}[n-n_{0}]</math>
+
     \therefore  System is time-variant
   
+
     <math>\therefore</math> System is time-variant
+

Revision as of 15:43, 30 June 2008

(a) Derive the condition for which the discrete time complex exponetial signal x[n] is periodic.

 $ x[n] = e^{jw_{o}n} $         
 $ x[n] = x[n+N] = e^{jw_{o}(n+N)} = e^{jw_{o}n}e^{jw_{o}N} $
 to be periodic 
 $ e^{jw_{o}N} = 1 = e^{j2\pi k} $
 $ \therefore w_{o}N = 2\pi k $
 $ \Rightarrow \frac{w_{o}}{2\pi} = \frac{K}{N} \Rightarrow $Rational number
 $ \therefore \frac{w_{o}}{2\pi} $ shold be a rational number

(b) Show that the system described by

   y[n] = x[n] + x[n+1] + x[n+2] is a LTI system.
   ax_{1}[n]+bx_{2}[n] → ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]
                       = a(x_{1}[n]+x_{1}[n+1]+x_{1}[n+2])+b(x_{2}[n]+x_{2}[n+1]+x_{2}[n+2])
                       = ay_{1}[n]+by_{2}[n]  \therefore System is linear


   y_{1}[n-n_{0}] = x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2]
   Let x_{2} = x_{1}[n-n_{0}]
     x_{2}[n] \rightarrow x_{2}[n]+x_{2}[n+1]+x_{2}[n+2]
   = x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2] = y_{1}[n-n_{0}]
   \therefore  System is time-variant

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood