(6 intermediate revisions by one other user not shown) | |||
Line 4: | Line 4: | ||
A - | A - | ||
− | <math>y[n] = \sum_{k=\infty}^\infty x[k]h[n-k]</math> | + | <math>y[n] = \sum_{k= \neg \infty}^\infty x[k]h[n-k]</math> |
− | <math>y[n] = \sum_{k=\infty}^\infty h[k]x[n-k]</math> | + | <math>y[n] = \sum_{k= \neg \infty}^\infty h[k]x[n-k]</math> |
Now, for the output to depend only on the current input value, | Now, for the output to depend only on the current input value, | ||
Line 16: | Line 16: | ||
B - | B - | ||
− | <math>y[n] = \sum_{k=\infty}^\infty x[k]h[n-k]</math> | + | <math>y[n] = \sum_{k= \neg \infty}^\infty x[k]h[n-k]</math> |
To be causal, | To be causal, | ||
Line 28: | Line 28: | ||
x[n] < B for all n | x[n] < B for all n | ||
− | <math>y[n] = \sum_{k=\infty}^\infty h[k]x[n-k]</math> | + | <math>y[n] = \sum_{k= \neg \infty}^\infty h[k]x[n-k]</math> |
<math> \mid x[k] \mid </math> < B for all k | <math> \mid x[k] \mid </math> < B for all k | ||
− | <math>\mid y[n] \mid = \mid \sum_{k=\infty}^\infty h[k]x[n-k] \mid </math> | + | <math>\mid y[n] \mid = \mid \sum_{k= \neg \infty}^\infty h[k]x[n-k] \mid </math> |
− | <math>\mid y[n] \mid \leq \mid \sum_{k=\infty}^\infty h[k]x[n-k] \mid </math> | + | <math>\mid y[n] \mid \leq \mid \sum_{k= \neg \infty}^\infty h[k]x[n-k] \mid </math> |
− | <math>\mid y[n] \mid \leq \sum_{k=\infty}^\infty \mid h[k] \mid \mid x[n-k] \mid </math> | + | <math>\mid y[n] \mid \leq \sum_{k= \neg \infty}^\infty \mid h[k] \mid \mid x[n-k] \mid </math> |
− | <math>\mid y[n] \mid \leq \sum_{k=\infty}^\infty \mid h[k] \mid \times B </math> | + | <math>\mid y[n] \mid \leq \sum_{k= \neg \infty}^\infty \mid h[k] \mid \times B </math> |
− | <math>\mid y[n] \mid < \infty </math> IFF <math> \sum_{k=\infty}^\infty \mid h[k] \mid < \infty </math> | + | <math>\mid y[n] \mid < \infty </math> IFF <math> \sum_{k= \neg \infty}^\infty \mid h[k] \mid < \infty </math> |
− | <math> \sum_{k=\infty}^\infty h[k] = \sum_{k = \infty}^\infty {\delta[n+1] + \delta [n-1]} </math> | + | <math> \sum_{k= \neg \infty}^\infty h[k] = \sum_{k = \neg \infty}^\infty {\delta[n+1] + \delta [n-1]} </math> |
− | <math> \sum_{k=\infty}^\infty h[k] = \sum_{k = -1}^1 {1} = 2 < \infty </math> | + | <math> \sum_{k= \neg \infty}^\infty h[k] = \sum_{k = -1}^1 {1} = 2 < \infty </math> |
Therefore, h[n] is stable. | Therefore, h[n] is stable. | ||
Line 53: | Line 53: | ||
− | A - <math>y(t) = \int_{\infty}^\infty x(t)h(t- \tau)</math> | + | A - <math>y(t) = \int_{ \neg \infty}^\infty x(t)h(t- \tau) d\tau </math> |
− | <math>y(t) = \int_{\infty}^\infty h(t)x(t - \tau)</math> | + | <math>y(t) = \int_{ \neg \infty}^\infty h(t)x(t - \tau) d\tau </math> |
Now, for the output to depend only on the current input value, | Now, for the output to depend only on the current input value, | ||
Line 67: | Line 67: | ||
To be causal, | To be causal, | ||
− | h(t) = 0 for | + | h(t) = 0 for t < 0 |
− | For an LTI system to be causal, the output should NOT depend on the future input values. In this case, the output only depends on the past input values and as a result, is causal. Therefore, '''<math>h(t) = 0 for | + | For an LTI system to be causal, the output should NOT depend on the future input values. In this case, the output only depends on the past input values and as a result, is causal. Therefore, '''<math>h(t) = 0 for t < 0</math>'''. One can easily check the causality of an LTI system by looking at the negative x-axis. |
Line 93: | Line 93: | ||
Therefore, h(t) is stable. | Therefore, h(t) is stable. | ||
+ | |||
+ | ==Alternaive Solutions== | ||
+ | [[Problem 4 - Mistake in solution posted_Old Kiwi]] |
Latest revision as of 15:20, 3 July 2008
SYSTEM 1 - $ h[n] = \delta[n+1] + \delta[n-1] $
A -
$ y[n] = \sum_{k= \neg \infty}^\infty x[k]h[n-k] $
$ y[n] = \sum_{k= \neg \infty}^\infty h[k]x[n-k] $
Now, for the output to depend only on the current input value,
$ h[k] = 0 $ if $ k \neq 0 $ $ \rightarrow h[k] = A \delta[k] $ $ \rightarrow h[n] = K \delta[n] $ $ \rightarrow y[n] = Kx[n] $
For an LTI system to be memoryless, the output value of 'n' should only depend on the CURRENT input value of 'n'. That is, $ y[n] = Kx[n] $. But, in this case, the output value of 'n' depends on the past and future values of 'n'. In other words, $ y[n] \neq Kx[n] $. As a result, the system is NOT memoryless or has memory.
B -
$ y[n] = \sum_{k= \neg \infty}^\infty x[k]h[n-k] $
To be causal, h[n-k] = 0 for k > n $ \rightarrow $ h[k] = 0 for k < 0
For an LTI system to be causal, the output should NOT depend on the future input values. In other words, $ h[k] = 0 for k < 0 $. But, in this case, the output does depend on the future input values and as a result, is not causal. That is, $ h[k] \neq 0 for k < 0 $. One can easily check the causality of an LTI system by looking at the negative x-axis.
C - Stable (Why?)
x[n] < B for all n
$ y[n] = \sum_{k= \neg \infty}^\infty h[k]x[n-k] $
$ \mid x[k] \mid $ < B for all k
$ \mid y[n] \mid = \mid \sum_{k= \neg \infty}^\infty h[k]x[n-k] \mid $
$ \mid y[n] \mid \leq \mid \sum_{k= \neg \infty}^\infty h[k]x[n-k] \mid $
$ \mid y[n] \mid \leq \sum_{k= \neg \infty}^\infty \mid h[k] \mid \mid x[n-k] \mid $
$ \mid y[n] \mid \leq \sum_{k= \neg \infty}^\infty \mid h[k] \mid \times B $
$ \mid y[n] \mid < \infty $ IFF $ \sum_{k= \neg \infty}^\infty \mid h[k] \mid < \infty $
$ \sum_{k= \neg \infty}^\infty h[k] = \sum_{k = \neg \infty}^\infty {\delta[n+1] + \delta [n-1]} $
$ \sum_{k= \neg \infty}^\infty h[k] = \sum_{k = -1}^1 {1} = 2 < \infty $
Therefore, h[n] is stable.
SYSTEM 2 -
$ h(t) = e^t[u(t-2) - u(t-5)] $
A - $ y(t) = \int_{ \neg \infty}^\infty x(t)h(t- \tau) d\tau $
$ y(t) = \int_{ \neg \infty}^\infty h(t)x(t - \tau) d\tau $
Now, for the output to depend only on the current input value,
$ h(t) = 0 $ if $ t \neq 0 $ $ \rightarrow h(t) = A \delta[k] $ $ \rightarrow y(t) = Kx(t) $
For an LTI system to be memoryless, the output value of 't' should only depend on the CURRENT input value of 't'. That is, $ y(t) = Ax(t) $. But, in this case, the output value of 't' depends on the past value of 't'. In other words, $ y(t) \neq Ax(t) $. As a result, the system is NOT memoryless or has memory.
B - $ y(t) = \int_{\neg \infty}^\infty x(t)h(t - \tau) d\tau $
To be causal, h(t) = 0 for t < 0
For an LTI system to be causal, the output should NOT depend on the future input values. In this case, the output only depends on the past input values and as a result, is causal. Therefore, $ h(t) = 0 for t < 0 $. One can easily check the causality of an LTI system by looking at the negative x-axis.
C - Stable (Why?)
x(t) < B for all t
$ y(t) = \int_{\neg \infty}^\infty h(\tau)x(t - \tau) d\tau $
$ \mid y(t) \mid = \mid \int_{\neg \infty}^\infty x(t - \tau)h(\tau) d\tau \mid $
$ \mid y(t) \mid \leq \int_{\neg \infty}^\infty \mid x(t - \tau) \mid \mid h(\tau) \mid d\tau $
$ \mid y(t) \mid \leq B \times \int_{\neg \infty}^\infty \mid h(\tau) \mid d\tau $
$ \mid y(t) \mid < \infty $ IFF $ \int_{\neg \infty}^\infty \mid h(\tau) \mid d\tau < \infty $
$ \int_{\neg \infty}^\infty h(\tau) d\tau \leq \int_{\neg \infty}^\infty e^\tau[u(\tau-2) - u(\tau-5)] d\tau $
$ \int_{\neg \infty}^\infty h(\tau) d\tau \leq \int_{2}^5 {e^\tau} d\tau $
$ \int_{\neg \infty}^\infty h(\tau) d\tau \leq {e^5 - e^2} = (Constant) < \infty $
Therefore, h(t) is stable.