Line 15: Line 15:
 
<math> \theta = \pi </math>
 
<math> \theta = \pi </math>
  
C)  
+
C) <math> (1 + j)^{5} </math>
 
+
<math> (1 + j)^{5} </math>
+
  
 
<math> r = \sqrt{1^2 + 1^2} = \sqrt{2} </math>
 
<math> r = \sqrt{1^2 + 1^2} = \sqrt{2} </math>

Revision as of 00:23, 13 June 2008

Express each of the following complex numbers in polar form, and plot them in the complex plane, indicating the magnitude and angle of each number.

A) $ 1 + j\sqrt{3} $

$ r = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{4} = 2 $

$ \theta = arctan(\sqrt{3}/1) = arctan(\sqrt{3}) = \frac{\pi}{3} $

Therefore the polar form of this complex number is: $ 2e^{j\frac{\pi}{3}} $

B) $ -5 $

$ r = 5 $

$ \theta = \pi $

C) $ (1 + j)^{5} $

$ r = \sqrt{1^2 + 1^2} = \sqrt{2} $

$ \theta = \frac{\pi}{4} $

$ (1 + j) = \sqrt{2}e^{j\frac{\pi}{4}} $

$ (1 + j)^{5} = (\sqrt{2}e^{j\frac{\pi}{4}})^{5} = 2^{\frac{5}{2}}e^{j\frac{5\pi}{4}} = 4\sqrt{2}e^{j(\pi + \frac{\pi}{4})} =4\sqrt{2}e^{j\pi}e^{j\frac{\pi}{4}} = 4(\sqrt{2}e^{j\frac{\pi}{4}}) = -4(1 + j) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood