Line 23: Line 23:
 
Given a value of X, we will say H1 is true if X is in region R, else will will say H0 is true.
 
Given a value of X, we will say H1 is true if X is in region R, else will will say H0 is true.
  
Type I error
+
'''Type I error'''
  
 
Say H1 when truth is H0. Probability of this is: Pr(Say H1|H0) = Pr(X is in R|theta0)
 
Say H1 when truth is H0. Probability of this is: Pr(Say H1|H0) = Pr(X is in R|theta0)
  
Type II error
+
'''Type II error'''
  
 
Say H0 when truth is H1. Probability of this is: Pr(Say H0|H1) = Pr(X is NOT in R|theta1)
 
Say H0 when truth is H1. Probability of this is: Pr(Say H0|H1) = Pr(X is NOT in R|theta1)

Revision as of 09:51, 12 December 2008

Maximum Likelihood Estimation (ML)

$ \hat a_{ML} = \text{max}_a ( f_{X}(x_i;a)) $ continuous

$ \hat a_{ML} = \text{max}_a ( Pr(x_i;a)) $ discrete

Maximum A-Posteriori Estimation (MAP)

$ \hat \theta_{MAP}(x) = \text{arg max}_\theta P_{X|\theta}(x|\theta)P_ {\theta}(\theta) $


Minimum Mean-Square Estimation (MMSE)

$ \hat{y}_{\rm MMSE}(x) = \int\limits_{-\infty}^{\infty}\ {y}{f}_{\rm Y|X}(y|x)\, dy={E}(Y|X=x) $

Mean square error : $ MSE = E[(\theta - \hat \theta(x))^2] $

Linear Minimum Mean-Square Estimation (LMMSE)

$ \hat{y}_{\rm LMMSE}(x) = E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $

Hypothesis Testing: ML Rule

Given a value of X, we will say H1 is true if X is in region R, else will will say H0 is true.

Type I error

Say H1 when truth is H0. Probability of this is: Pr(Say H1|H0) = Pr(X is in R|theta0)

Type II error

Say H0 when truth is H1. Probability of this is: Pr(Say H0|H1) = Pr(X is NOT in R|theta1)

Hypothesis Testing: MAP Rule

Overall P(err)

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009