(Maximum Likelihood Estimation (ML))
(Hypothesis Testing: ML Rule)
Line 19: Line 19:
  
 
Type I error
 
Type I error
 +
 +
Say H1 when truth is H0. Probability of this is: <math>Pr(Say H1|H0) = Pr(X is in R|theta0)</math>
  
 
Type II error
 
Type II error

Revision as of 04:15, 12 December 2008

Maximum Likelihood Estimation (ML)

$ \hat a_{ML} = \text{max}_a ( f_{X}(x_i;a)) $ continuous

$ \hat a_{ML} = \text{max}_a ( Pr(x_i;a)) $ discrete

Maximum A-Posteriori Estimation (MAP)

Minimum Mean-Square Estimation (MMSE)

$ \hat{y}_{\rm MMSE}(x) = \int\limits_{-\infty}^{\infty}\ {y}{f}_{\rm Y|X}(y|x)\, dy={E}(Y|X=x) $

Mean square error : $ MSE = E[(\theta - \hat \theta(x))^2] $

Linear Minimum Mean-Square Estimation (LMMSE)

$ \hat{y}_{\rm LMMSE}(x) = E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $

Hypothesis Testing: ML Rule

Type I error

Say H1 when truth is H0. Probability of this is: $ Pr(Say H1|H0) = Pr(X is in R|theta0) $

Type II error

Hypothesis Testing: MAP Rule

Overall P(err)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett