Line 11: Line 11:
  
  
Mean square estimate : <math>MSE = E[(\theta - \hat \theta(x))^2]
+
Mean square error : <math>MSE = E[(\theta - \hat \theta(x))^2]</math>
  
 
==Linear Minimum Mean-Square Estimation (LMMSE)==
 
==Linear Minimum Mean-Square Estimation (LMMSE)==

Revision as of 15:36, 11 December 2008

Maximum Likelihood Estimation (ML)

Maximum A-Posteriori Estimation (MAP)

Minimum Mean-Square Estimation (MMSE)

$ {y}_{\rm MMSE}(x) \int\limits_{-inf}^{inf}\ {y}{f}_{\rm y|x}(Y|X=x)\, dy={E}(Y|X=x) $


$ {y}_{\rm LMMSE}(x)=E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $


Mean square error : $ MSE = E[(\theta - \hat \theta(x))^2] $

Linear Minimum Mean-Square Estimation (LMMSE)

Hypothesis Testing: ML Rule

Type I error

Type II error

Hypothesis Testing: MAP Rule

Overall P(err)

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics