(New page: <math>f_{y|x}(y|a)= \frac {f_{X,Y}(x,y)}{f_X(a)} Where f_X(a) = f_X(x) for 0<x<0.5</math> *I'm not sure if this is right*)
 
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<math>f_{y|x}(y|a)= \frac {f_{X,Y}(x,y)}{f_X(a)}  Where f_X(a) = f_X(x) for 0<x<0.5</math>  
+
<math>f_{y|x}(y|a)= \frac {f_{X,Y}(x,y)}{f_X(a)}\qquad \mathrm{Where}\ f_X(a) = f_X(x)\ \mathrm{for}\ 0<x<0.5</math>  
  
*I'm not sure if this is right*
+
I'm not sure if this is right
 +
 
 +
----
 +
 
 +
I agree with your proposal, Arie.  Let's finish this section of the problem:
 +
 
 +
<math>f_{Y|X}(y|a)= \frac {f_{X,Y}(a,y)}{f_X(a)}</math>
 +
 
 +
We know <math>f_X (a) = \frac{2}{3}</math> from part a, and from the graph, <math>f_{XY} (a,y) = \{\frac{4}{3}, \ \ 0.5 \leq y \leq 1;  \ \ \ 0, \ \ \text{else}\}</math>.
 +
 
 +
So, dividing, <math>f_{Y|X}(y|a)= = \{2, \ \ 0.5 \leq y \leq 1;  \ \ \ 0, \ \ \text{else}\}</math>.
 +
 
 +
<math>E(Y|X=a) = \frac{3}{4}</math>, and <math>Var(Y|X=a) = \frac{1}{48}</math>, since <math>f_{Y|X}(y|a) \frac{}{}</math> has a uniform PDF.
 +
 
 +
-Brian ([[User:Thomas34|Thomas34]] 00:23, 9 December 2008 (UTC))

Latest revision as of 16:31, 9 December 2008

$ f_{y|x}(y|a)= \frac {f_{X,Y}(x,y)}{f_X(a)}\qquad \mathrm{Where}\ f_X(a) = f_X(x)\ \mathrm{for}\ 0<x<0.5 $

I'm not sure if this is right


I agree with your proposal, Arie. Let's finish this section of the problem:

$ f_{Y|X}(y|a)= \frac {f_{X,Y}(a,y)}{f_X(a)} $

We know $ f_X (a) = \frac{2}{3} $ from part a, and from the graph, $ f_{XY} (a,y) = \{\frac{4}{3}, \ \ 0.5 \leq y \leq 1; \ \ \ 0, \ \ \text{else}\} $.

So, dividing, $ f_{Y|X}(y|a)= = \{2, \ \ 0.5 \leq y \leq 1; \ \ \ 0, \ \ \text{else}\} $.

$ E(Y|X=a) = \frac{3}{4} $, and $ Var(Y|X=a) = \frac{1}{48} $, since $ f_{Y|X}(y|a) \frac{}{} $ has a uniform PDF.

-Brian (Thomas34 00:23, 9 December 2008 (UTC))

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach