(New page: <math>\scriptstyle f(x)\ =\ x^n+a_{n-1}x^{n-1}+\ldots+a_0\ =\ \in\ Z[x],\ (x-r)\mid f(x),\ r=\frac{p}{q},\ p,q\in\mathbb{Z},\ q\neq0</math> <math>\scriptstyle\Rightarrow\ f(x)\ =\ (x-\fra...)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<math>\scriptstyle f(x)\ =\ x^n+a_{n-1}x^{n-1}+\ldots+a_0\ =\ \in\ Z[x],\ (x-r)\mid f(x),\ r=\frac{p}{q},\ p,q\in\mathbb{Z},\ q\neq0</math>
+
<math>\scriptstyle f(x)\ =\ x^n+a_{n-1}x^{n-1}+\ldots+a_0\ =\ \in\ Z[x],\ (x-r)\mid f(x),\ r=\frac{p}{q},\ p,q\in\mathbb{Z},\ gcd(p,q)=1,\ q\neq0</math>
 +
 
 +
Note that we can assume that <math>\scriptstyle gcd(p,q)=1</math> because in any representation <math>\scriptstyle r\ =\ \frac{s}{t}\ \mid s,t\in\mathbb{Z},\ t\neq0</math> where <math>\scriptstyle s</math> and <math>\scriptstyle t</math> are not coprime we can find a coprime <math>\scriptstyle p</math> and <math>\scriptstyle q</math> such that <math>\scriptstyle r\ =\ \frac{p\cdot gcd(s,t)}{q\cdot gcd(s,t)}\ =\ \frac{p}{q}</math>.
  
 
<math>\scriptstyle\Rightarrow\ f(x)\ =\ (x-\frac{p}{q})(x^{n-1}+b_{n-2}x^{n-2}+\ldots+b_0),\ \ b_{n-2},\ldots,b_0\in\mathbb{Q}</math>
 
<math>\scriptstyle\Rightarrow\ f(x)\ =\ (x-\frac{p}{q})(x^{n-1}+b_{n-2}x^{n-2}+\ldots+b_0),\ \ b_{n-2},\ldots,b_0\in\mathbb{Q}</math>
Line 15: Line 17:
 
<math>\scriptstyle\Rightarrow\ p^n\ =\ q\cdot(-a_{n-1}p^{n-1}-a_{n-2}p^{n-2}q-\ldots-a_1pq^{n-2}-a_0q^{n-1})</math>
 
<math>\scriptstyle\Rightarrow\ p^n\ =\ q\cdot(-a_{n-1}p^{n-1}-a_{n-2}p^{n-2}q-\ldots-a_1pq^{n-2}-a_0q^{n-1})</math>
  
<math>\scriptstyle\Rightarrow\ q\mid p^n\ \Rightarrow\ q\mid p</math>
+
<math>\scriptstyle\Rightarrow\ q\mid p^n</math>
  
<math>\scriptstyle\Rightarrow\ p\ =\ qs,\ s\in\mathbb{Z}\ \Rightarrow\ r\ =\ \frac{p}{q}\ =\ \frac{qs}{q}\ =\ s</math>.
+
Since <math>\scriptstyle gcd(p,q)=1</math>, this implies that <math>\scriptstyle q\ =\ 1</math>.
 +
 
 +
<math>\scriptstyle\Rightarrow\ r\ =\ \frac{p}{1}\ =\ p</math>
  
 
<math>\scriptstyle\Rightarrow\ r\ \in\ \mathbb{Z}</math>.  <math>\scriptstyle\Box</math>
 
<math>\scriptstyle\Rightarrow\ r\ \in\ \mathbb{Z}</math>.  <math>\scriptstyle\Box</math>
 
:--[[User:Narupley|Nick Rupley]] 03:37, 8 April 2009 (UTC)
 
:--[[User:Narupley|Nick Rupley]] 03:37, 8 April 2009 (UTC)
 +
 +
 +
Nick- Thanks so much for posting!  This problem makes sense now!

Latest revision as of 17:28, 8 April 2009

$ \scriptstyle f(x)\ =\ x^n+a_{n-1}x^{n-1}+\ldots+a_0\ =\ \in\ Z[x],\ (x-r)\mid f(x),\ r=\frac{p}{q},\ p,q\in\mathbb{Z},\ gcd(p,q)=1,\ q\neq0 $

Note that we can assume that $ \scriptstyle gcd(p,q)=1 $ because in any representation $ \scriptstyle r\ =\ \frac{s}{t}\ \mid s,t\in\mathbb{Z},\ t\neq0 $ where $ \scriptstyle s $ and $ \scriptstyle t $ are not coprime we can find a coprime $ \scriptstyle p $ and $ \scriptstyle q $ such that $ \scriptstyle r\ =\ \frac{p\cdot gcd(s,t)}{q\cdot gcd(s,t)}\ =\ \frac{p}{q} $.

$ \scriptstyle\Rightarrow\ f(x)\ =\ (x-\frac{p}{q})(x^{n-1}+b_{n-2}x^{n-2}+\ldots+b_0),\ \ b_{n-2},\ldots,b_0\in\mathbb{Q} $

$ \scriptstyle f(r)\ =\ f(\frac{p}{q})\ =\ (\frac{p}{q}-\frac{p}{q})(\textstyle\cdots\cdots\scriptstyle)\ =\ 0 $.

$ \scriptstyle\Rightarrow\ (\frac{p}{q})^n+a_{n-1}(\frac{p}{q})^{n-1}+\ldots+a_1(\frac{p}{q})+a_0\ =\ 0 $.

Now, multiply both sides by $ \scriptstyle q^n $:

$ \scriptstyle p^n+a_{n-1}p^{n-1}q+\ldots+a_1pq^{n-1}+a_0q^n\ =\ 0 $

$ \scriptstyle\Rightarrow\ p^n\ +\ q\cdot(a_{n-1}p^{n-1}+a_{n-2}p^{n-2}q+\ldots+a_1pq^{n-2}+a_0q^{n-1})\ =\ 0 $

$ \scriptstyle\Rightarrow\ p^n\ =\ q\cdot(-a_{n-1}p^{n-1}-a_{n-2}p^{n-2}q-\ldots-a_1pq^{n-2}-a_0q^{n-1}) $

$ \scriptstyle\Rightarrow\ q\mid p^n $

Since $ \scriptstyle gcd(p,q)=1 $, this implies that $ \scriptstyle q\ =\ 1 $.

$ \scriptstyle\Rightarrow\ r\ =\ \frac{p}{1}\ =\ p $

$ \scriptstyle\Rightarrow\ r\ \in\ \mathbb{Z} $. $ \scriptstyle\Box $

--Nick Rupley 03:37, 8 April 2009 (UTC)


Nick- Thanks so much for posting! This problem makes sense now!

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang