(New page: a) <br> <math>H(z) = \frac{1 - \frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}} = \frac{(1 - \frac{1}{\sqrt{2}}z^{-1})(1 + \frac{1}{\sqrt{2}}z^{-1})}{(1-\frac{1...)
 
 
(8 intermediate revisions by one other user not shown)
Line 1: Line 1:
a) <br>
+
[[Category:ECE438Spring2009mboutin]]
 +
 
 +
a) <br />
  
 
<math>H(z) = \frac{1 - \frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}}
 
<math>H(z) = \frac{1 - \frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}}
Line 8: Line 10:
 
<math> zero = \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}</math>
 
<math> zero = \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}</math>
  
<math> pole = \frac{1}{2\sqrt{2}}+\frac{j}{2\sqrt{2}},\frac{1}{2\sqrt{2}}-\frac{j}{2\sqrt{2}}</math>
+
<math> pole = \frac{1}{2\sqrt{2}}+\frac{j}{2\sqrt{2}},\frac{1}{2\sqrt{2}}-\frac{j}{2\sqrt{2}}</math>--[[User:Kim415|Kim415]] 16:04, 1 March 2009 (UTC)
 +
 
 +
b) check out the the Prof. [http://cobweb.ecn.purdue.edu/~allebach/ece438/lecture/module_1/1.5_z_transform/1.5.4_zt_and_ccf_diff_eq.pdf Allebach's useful lecture note] for this problem.--[[User:Kim415|Kim415]] 16:07, 1 March 2009 (UTC)
 +
 
 +
c) unstable, because it is recursive equation and some output will go to the infinite from the certain input value which is bounded.--[[User:Kim415|Kim415]] 16:04, 1 March 2009 (UTC)
  
b) check out the the Prof. [http://cobweb.ecn.purdue.edu/~allebach/ece438/lecture/module_1/1.5_z_transform/1.5.4_zt_and_ccf_diff_eq.pdf Allebach's useful lecture note] for this problem.
+
I'm not sure of my answer of c). If you guys have any good answer, please post yours on this page.
  
c) unstable, because it is recursive equation and some output will not be bounded from the certain input value which is bounded.
+
For c you may also be able to say that for left-sided input signals, the ROC of the Z-transform is inside the unit circle, and thus contains poles. So, for certain bounded left-sided input signals, the output will be unbounded (I believe). --[[User:Ghadley|Ghadley]] 17:43, 2 March 2009 (UTC)
  
d) <br>
+
d) <br />
  
<math>
+
<math>H(z) = \frac{1 - \frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}}</math><br />
 +
<math>Y(z)(1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}) = X(z)(1 - \frac{1}{2}z^{-2})</math><br />
 +
<math>y[n] - \frac{1}{\sqrt{2}}y[n-1] + \frac{1}{4}y[n-2] =x[n] - \frac{1}{2}x[n-2]</math><br />
 +
<math>y[n] = x[n] - \frac{1}{2}x[n-2] + \frac{1}{\sqrt{2}}y[n-1] - \frac{1}{4}y[n-2]</math><br /> --[[User:Kim415|Kim415]] 16:05, 1 March 2009 (UTC)

Latest revision as of 12:44, 2 March 2009


a)

$ H(z) = \frac{1 - \frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}} = \frac{(1 - \frac{1}{\sqrt{2}}z^{-1})(1 + \frac{1}{\sqrt{2}}z^{-1})}{(1-\frac{1}{2\sqrt{2}}+\frac{j}{2\sqrt{2}}z^{-1})(1-\frac{1}{2\sqrt{2}}-\frac{j}{2\sqrt{2}}z^{-1})} $


$ zero = \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} $

$ pole = \frac{1}{2\sqrt{2}}+\frac{j}{2\sqrt{2}},\frac{1}{2\sqrt{2}}-\frac{j}{2\sqrt{2}} $--Kim415 16:04, 1 March 2009 (UTC)

b) check out the the Prof. Allebach's useful lecture note for this problem.--Kim415 16:07, 1 March 2009 (UTC)

c) unstable, because it is recursive equation and some output will go to the infinite from the certain input value which is bounded.--Kim415 16:04, 1 March 2009 (UTC)

I'm not sure of my answer of c). If you guys have any good answer, please post yours on this page.

For c you may also be able to say that for left-sided input signals, the ROC of the Z-transform is inside the unit circle, and thus contains poles. So, for certain bounded left-sided input signals, the output will be unbounded (I believe). --Ghadley 17:43, 2 March 2009 (UTC)

d)

$ H(z) = \frac{1 - \frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}} $
$ Y(z)(1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}) = X(z)(1 - \frac{1}{2}z^{-2}) $
$ y[n] - \frac{1}{\sqrt{2}}y[n-1] + \frac{1}{4}y[n-2] =x[n] - \frac{1}{2}x[n-2] $
$ y[n] = x[n] - \frac{1}{2}x[n-2] + \frac{1}{\sqrt{2}}y[n-1] - \frac{1}{4}y[n-2] $
--Kim415 16:05, 1 March 2009 (UTC)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett