(MAP Estimation Rule)
(Confidence Intervals, and how to get them via Chebyshev)
Line 36: Line 36:
  
 
==Confidence Intervals, and how to get them via Chebyshev==
 
==Confidence Intervals, and how to get them via Chebyshev==
 +
 +
<math>\theta is unknown and fixed
 +
<math>\hat \theta is random and should be close to <math>\theta most of the time
 +
if Pr[abs(<math>\hat \theta - <math>\theta) <= E] >= (1-a) then we say we have (1-a) confidence in the interval [<math>\hat \theta -E, <math>\hat \theta + E]

Revision as of 16:56, 18 November 2008

Covariance

  • $ COV(X,Y)=E[(X-E[X])(Y-E[Y])]\! $
  • $ COV(X,Y)=E[XY]-E[X]E[Y]\! $

Correlation Coefficient

$ \rho(X,Y)= \frac {cov(X,Y)}{\sqrt{var(X)} \sqrt{var(Y)}} \, $

Markov Inequality

Loosely speaking: In a nonnegative RV has a small mean, then the probability that it takes a large value must also be small.

  • $ P(X \geq a) \leq E[X]/a\! $

for all a > 0

Chebyshev Inequality

"Any RV is likely to be close to its mean"

$ \Pr(\left|X-E[X]\right|\geq C)\leq\frac{var(X)}{C^2}. $

ML Estimation Rule

$ \hat a_{ML} = \text{max}_a ( f_{X}(x_i;a)) $ continuous

$ \hat a_{ML} = \text{max}_a ( Pr(x_i;a)) $ discrete

MAP Estimation Rule

$ \hat \theta_{MAP} = \text{argmax}_\theta ( f_{\theta|X}(\theta|x)) $

Which can be expanded and turned into the following (if I am not mistaken):

$ \hat \theta_{MAP} = \text{argmax}_\theta ( f_{X|\theta}(x|\theta)f_{\theta}(\theta)) $

Bias of an Estimator, and Unbiased estimators

An estimator is unbiased if: $ E[\hat a_{ML}] = a $ for all values of a

Confidence Intervals, and how to get them via Chebyshev

$ \theta is unknown and fixed <math>\hat \theta is random and should be close to <math>\theta most of the time if Pr[abs(<math>\hat \theta - <math>\theta) <= E] >= (1-a) then we say we have (1-a) confidence in the interval [<math>\hat \theta -E, <math>\hat \theta + E] $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang