(New page: Category:ECE438Spring2009mboutin Grading format: <br>Similar to the grading format of HW1&2, HW3 is graded for completeness as well as theoretical understanding of course material.) |
|||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
Grading format: | Grading format: | ||
<br>Similar to the grading format of HW1&2, HW3 is graded for completeness as well as theoretical understanding of course material. | <br>Similar to the grading format of HW1&2, HW3 is graded for completeness as well as theoretical understanding of course material. | ||
+ | |||
+ | <br> Comments: <br> | ||
+ | - Using sinc and rect functions along with Fourier transform properties is key to solving some of the problems <br> | ||
+ | - The DTFT <math>X(\omega)</math> and CTFT X(f) are different: do not confuse them with each other. The DTFT is the discrete time Fourier transform of x[n], which is the sampled signal of continuous time signal x(t) <br> |
Latest revision as of 19:27, 18 February 2009
Grading format:
Similar to the grading format of HW1&2, HW3 is graded for completeness as well as theoretical understanding of course material.
Comments:
- Using sinc and rect functions along with Fourier transform properties is key to solving some of the problems
- The DTFT $ X(\omega) $ and CTFT X(f) are different: do not confuse them with each other. The DTFT is the discrete time Fourier transform of x[n], which is the sampled signal of continuous time signal x(t)