Line 21: Line 21:
 
where
 
where
  
<math>\mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}]</math>
+
<math>\mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})]</math>
 +
 
 +
and
 +
 
 +
<math>\mathcal{F}(rect(\frac{t}{2})) = 2\sinc <math>

Revision as of 09:28, 9 February 2009

Howdy, My name is Myron Lo and I'm a senior in EE.

I enjoy photography, combat sports, and Minidisc.


Myron guitar.jpg


--Mlo 12:03, 13 January 2009 (UTC)

Experimenting with inserting formulas to participate in hw discussion

Hw1:

$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $

Using the convolution property

$ X_(f) = \mathcal{F} (cos(\frac{\pi t}{2}))* \mathcal{F}(rect(\frac{t}{2})) $

where

$ \mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] $

and

$ \mathcal{F}(rect(\frac{t}{2})) = 2\sinc <math> $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett