(New page: Howdy, My name is Myron Lo and I'm a senior in EE. I enjoy photography, combat sports, and Minidisc. Image:Myron_guitar.jpg --~~~~) |
|||
Line 8: | Line 8: | ||
--[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC) | --[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC) | ||
+ | |||
+ | Experimenting with inserting formulas to participate in hw discussion | ||
+ | |||
+ | Hw1: | ||
+ | |||
+ | <math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2})</math> | ||
+ | |||
+ | Using the convolution property | ||
+ | |||
+ | <math>X_(f) = \mathcal{F} (cos(\frac{\pi t}{2}))* \mathcal{F}(rect(\frac{t}{2}))</math> | ||
+ | |||
+ | where | ||
+ | |||
+ | <math>\mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}]</math> |
Revision as of 09:07, 9 February 2009
Howdy, My name is Myron Lo and I'm a senior in EE.
I enjoy photography, combat sports, and Minidisc.
--Mlo 12:03, 13 January 2009 (UTC)
Experimenting with inserting formulas to participate in hw discussion
Hw1:
$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $
Using the convolution property
$ X_(f) = \mathcal{F} (cos(\frac{\pi t}{2}))* \mathcal{F}(rect(\frac{t}{2})) $
where
$ \mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}] $