(New page: Biased or unbiased? E[1/x] = integral(<math>f_X (x;\lambda)= \lambda e^{-\lambda x}</math> * (1/x) dx is undefined therefore biased because E[estimator] does not equal estimator)
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Biased or unbiased?
 
Biased or unbiased?
E[1/x] = integral(<math>f_X (x;\lambda)= \lambda e^{-\lambda x}</math> * (1/x) dx is undefined
+
*E[1/x] = integral(<math>\lambda e^{-\lambda x}</math> * (1/x)) dx * this integral is undefined
 
+
*therefore biased... because E[estimator] does not equal estimator
therefore biased because E[estimator] does not equal estimator
+

Latest revision as of 13:48, 10 November 2008

Biased or unbiased?

  • E[1/x] = integral($ \lambda e^{-\lambda x} $ * (1/x)) dx * this integral is undefined
  • therefore biased... because E[estimator] does not equal estimator

Alumni Liaison

EISL lab graduate

Mu Qiao