(New page: Problem Statement: Show that U(14) = <3> = <5>. Is U(14) = <11>? Answer: The long way of doing it (versus the tricks taught on 2/3/09): U(14) = {1,3,5,9,11,13} Test using 3 as the gener...)
 
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
[[Category:MA453Spring2009Walther]]
 +
 
Problem Statement:
 
Problem Statement:
 
Show that U(14) = <3> = <5>. Is U(14) = <11>?
 
Show that U(14) = <3> = <5>. Is U(14) = <11>?
Line 8: Line 10:
  
 
Test using 3 as the generator:
 
Test using 3 as the generator:
3^1 = 3
+
3^1 = 3;
3^2 = 9
+
3^2 = 9;
3^3 = 27 = -1 = 13
+
3^3 = 27 = -1 = 13;
3^4 = 13*3 = 39 = 11
+
3^4 = 13*3 = 39 = 11;
3^5 = 11*3 = 33 = 5
+
3^5 = 11*3 = 33 = 5;
 
3^6 = 5*3 = 15 = 1 (end of cycle and 3 generates all values in U(14), therefore is a generator)
 
3^6 = 5*3 = 15 = 1 (end of cycle and 3 generates all values in U(14), therefore is a generator)
  
 
Test using 5 as the generator:
 
Test using 5 as the generator:
5^1 = 5
+
5^1 = 5;
5^2 = 25 = -3 = 11
+
5^2 = 25 = -3 = 11;
5^3 = -15 = -1 = 13
+
5^3 = -15 = -1 = 13;
5^4 = -1*5 = -5 = 9
+
5^4 = -1*5 = -5 = 9;
5^5 = -5*5 = -25 = 3
+
5^5 = -5*5 = -25 = 3;
 
5^6 = 3*5 = 15 = 1 (end of cycle and 5 generates all values in U(14), therefore is a generator)
 
5^6 = 3*5 = 15 = 1 (end of cycle and 5 generates all values in U(14), therefore is a generator)
  
 
To see if U(14) = <11> test the powers of 11 to see if they generate all values in U(14):
 
To see if U(14) = <11> test the powers of 11 to see if they generate all values in U(14):
11^1 = 11
+
11^1 = 11;
11^2 = -3*-3 = 9
+
11^2 = -3*-3 = 9;
 
11^3 = 9*-3 = -27 = 1 (because <11> did not generate all values of U(14), <11> is not a generator)
 
11^3 = 9*-3 = -27 = 1 (because <11> did not generate all values of U(14), <11> is not a generator)
  
 
-K. Brumbaugh, 23:01, 3 February 2009
 
-K. Brumbaugh, 23:01, 3 February 2009
 +
 +
I did it the same way, but once I got to 3^5=5 and 5^5=3 they were equal.  It that right to assume. --[[User:Podarcze|Podarcze]] 13:05, 4 February 2009 (UTC)
 +
 +
 +
[[Category:MA453Spring2009Walther]]
 +
 +
I did it the same way as well.  What did you assume from taking 3^5 and 5^5? -K. Morley

Latest revision as of 07:18, 5 February 2009


Problem Statement: Show that U(14) = <3> = <5>. Is U(14) = <11>?

Answer: The long way of doing it (versus the tricks taught on 2/3/09):

U(14) = {1,3,5,9,11,13}

Test using 3 as the generator: 3^1 = 3; 3^2 = 9; 3^3 = 27 = -1 = 13; 3^4 = 13*3 = 39 = 11; 3^5 = 11*3 = 33 = 5; 3^6 = 5*3 = 15 = 1 (end of cycle and 3 generates all values in U(14), therefore is a generator)

Test using 5 as the generator: 5^1 = 5; 5^2 = 25 = -3 = 11; 5^3 = -15 = -1 = 13; 5^4 = -1*5 = -5 = 9; 5^5 = -5*5 = -25 = 3; 5^6 = 3*5 = 15 = 1 (end of cycle and 5 generates all values in U(14), therefore is a generator)

To see if U(14) = <11> test the powers of 11 to see if they generate all values in U(14): 11^1 = 11; 11^2 = -3*-3 = 9; 11^3 = 9*-3 = -27 = 1 (because <11> did not generate all values of U(14), <11> is not a generator)

-K. Brumbaugh, 23:01, 3 February 2009

I did it the same way, but once I got to 3^5=5 and 5^5=3 they were equal. It that right to assume. --Podarcze 13:05, 4 February 2009 (UTC)

I did it the same way as well. What did you assume from taking 3^5 and 5^5? -K. Morley

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin